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Abstract—We show that no existing continuous-time, binary
value-domain model for digital circuits is able to correctly capture
glitch propagation. Prominent examples of such models are based
on pure delay (P) channels, inertial delay (I) channels, or the
elaborate PID channels proposed by Bellido-Dı́az et al. We
accomplish our goal by considering the solvability/non-solvability
border of a simple problem called Short-Pulse Filtration (SPF),
which is closely related to arbitration and synchronization. On
one hand, we prove that SPF is solvable in bounded time in any
such model that provides channels with non-constant delay, like I
and PID. However, this is in opposition to the impossibility of
solving bounded SPF in real (Newtonian) circuit models, which
follows from well-known results on the behavior of bi-stable
circuits obtained by Marino. On the other hand, for binary circuit
models with pure delay channels, we prove that SPF cannot be
solved even in unbounded time. This, however, is in opposition
to the fact that one can easily solve the unbounded SPF problem
in Newtonian circuit models. Consequently, indeed none of the
binary value-domain models proposed so far faithfully captures
glitch propagation of real circuits.

Index Terms—circuit models; glitch propagation; binary mod-
els; modeling issues;

I. INTRODUCTION

Binary value-domain models that allow to model glitch

propagation have always been of interest, especially in asyn-

chronous design [1]: Pure delay channels, which propagate

input pulses with some constant delay, and inertial delay

channels, which propagate input pulses with some constant

delay only when they exceed some minimal duration, are

still the basis of most digital timing analysis approaches and

tools. The tremendous advances in digital circuit technology, in

particular, increased speeds and reduced voltage swings, raised

concerns about the accuracy of these models [2]. For example,

neither pure nor inertial delay models can express the well-

known phenomenon of propagating glitches that decay from

stage to stage, which is particularly important for analyzing

high-frequency pulse trains or oscillatory metastability [3].

At the same time, the steadily increasing complexity of

contemporary digital circuits fuels the need for fast digital

timing analysis techniques: Although accurate Spice models,

which facilitate very precise analog-level simulations, are

usually available for those circuits, the achievable simulation

times are prohibitive. Refined digital timing analysis models

like the PID model proposed by Bellido-Dı́az et al. [2], which

is both fast and more accurate, are hence very important from

a practical perspective [4].

The interest in binary models that faithfully model glitch

propagation and even metastability has also been stimulated

recently by the increasing importance of incorporating fault-

tolerance in circuit design [5]: Reduced voltage swings and

smaller critical charges make circuits more susceptible to

particle hits, crosstalk, and electromagnetic interference [6],

[7]. Since single-event transients, caused by an ionized particle

hitting a reverse-biased transistor, just manifest themselves

as short glitches, accurate propagation models are important

for assessing soft error rates, in particular, for asynchronous

circuits. After all, if system-level fault-tolerance techniques

like triple modular redundancy are used for transparently

masking value failures, the only remaining issue are timing

failures, among which glitches are the most problematic ones.

As a consequence, discrete-value circuit models, analysis

techniques and supporting tools for a fast but nevertheless

accurate glitch and metastability propagation analysis will

be a key issue in the design of future VLSI circuits. In

this paper, we rigorously prove that a generalization of the

existing binary-value candidate models proposed in the past

does not capture glitch propagation adequately. Searching for

alternative models is hence an important challenge for future

research on asynchronous circuits.

Detailed contributions: In Section III, we present a generic

binary value-domain model for digital clocked as well as

clockless circuits and introduce the SPF problem and its time-

bounded variant. The SPF problem is closely related to glitch

propagation, as it is essentially the problem of building a

one-shot inertial channel. Our generic model comprises zero-

time logical gates interconnected by channels that encapsulate

model-specific propagation delays and related decay effects.

Non-zero time logical gates can thus be expressed in our model

by appending channels with delay at the gate’s inputs and

outputs.

In Section IV, we prove that (even unbounded) SPF is

unsolvable when only pure, i.e., constant, delay channels are

available. In Section V, we demonstrate that this is incom-

patible with what is known for real circuits: We show that a



metastability filter based on a high-threshold inverter allows

to solve SPF in the Newtonian circuit model of Marino [3].

In Section VI, we turn our attention to a generalization

of constant delay channels, termed single-history channels,

which are FIFO channels with a generalized delay function

that also takes into consideration the last output transition. We

distinguish between forgetful and non-forgetful single-history

channels, depending on their behavior when a pulse disappears

at the output due to decay effects. All existing binary models

we are aware of can be expressed as single-history channels

with specific delay functions: A pure delay channel (P) as

either a forgetful or non-forgetful single-history channel, a

classical inertial delay channel (I) as a forgetful single-history

channel, and the channel model proposed by Bellido-Dı́az et

al. [2] that additionally has a decay component (PID) as a

non-forgetful single-history channel.

In Section VII, we prove that bounded SPF is solvable if just

a single forgetful or non-forgetful single-history channel with

non-constant delay is available: We present circuits solving

SPF for all non-constant delay channels and prove their

correctness. However, by using a reduction of bounded SPF

to the well-known impossibility of building a bistable circuit

that stabilizes in bounded-time in the Newtonian circuit model

of Marino [3], we again show the inadequacy of any of these

models for modeling glitch propagation in real circuits.

Fig. 1 summarizes our possibility and impossibility results,

showing the discrepancy of each model with real circuits.
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Fig. 1. Summarizing Possibility (X) and Impossibility (X) results for constant,
non-constant forgetful, non-constant non-forgetful and Newtonian physical
channels. Arrows represent implications, e.g., resulting from the fact that a
circuit that solves bounded SPF also solves SPF.

II. RELATED WORK

Unger [1] proposed a general technique for deriving asyn-

chronous sequential switching circuits that can cope with

unrelated input signals. It assumes signals to be binary valued,

and requires the availability of combinational circuit elements,

as well as pure and inertial delay channels.

Bellido-Dı́az et al. [2] propose the PID model, and justify its

appropriateness both analytically and by comparing the model

predictions against Spice simulation results. The results con-

firm very good accuracy even for such challenging scenarios

as long chains of gates and ring oscillators.

Marino [8] showed that the problem of building a synchro-

nizer can be reduced to the problem of building an inertial

delay channel. The reduction circuit only makes use of com-

binational gates and pure delay channels in addition to inertial

delay channels. Marino further shows, in a continuous value

signal model, that for a set of standard designs of inertial delay

channels, input pulses exist that produce outputs violating the

requirements of inertial delay channels. Barros and Johnson [9]

extended this work, by showing the equivalence of arbiter,

synchronizer, latch, and inertial delay channels.

Marino [3] developed a general theory of metastable oper-

ation, and provided impossibility proofs for metastability-free

synchronizers and arbiter circuits for several continuous-value

circuit models. Branicky [10] proved the impossibility of time-

unbounded deterministic and time-invariant arbiters modeled

as ordinary differential equations. Mendler and Stroup [11]

considered the same problem in the context of continuous au-

tomata.

Brzozowski and Ebergen [12] formally proved that, in a

model that uses only binary values, it is impossible to im-

plement Muller C-Elements (among other basic state-holding

components used in (quasi) delay-insensitive designs) using

only zero-time logical gates interconnected by wires without

timing restrictions.

Függer and Schmid [13] use a binary-value modeling frame-

work for analyzing the Byzantine fault-tolerant distributed

DARTS clocking approach. They proposed a system of in-

terconnected Tick Generation (TG) components, and showed

that clock transitions at each non-faulty TG component are

generated in synchrony (i.e., within bounded skew and with

bounded minimum and maximum delay between successive

ticks), despite at most a third of its TG components being

Byzantine faulty. They use pure delay channels and assume

the existence of SPF modules to circumvent glitch propagation

induced by faults. The same modeling and analysis framework

is also used in the self-stabilizing Byzantine fault-tolerant

FATAL protocol for distributed clock generation in SoCs [14].

III. BINARY SYSTEM MODEL

In this section, we introduce our binary value-domain circuit

model and the SPF problem.

A. Signals, Events

We consider circuits processing binary-valued signals with

continuous time, i.e., signal values are from B = {0, 1} and

they evolve over time T = [0,∞). A signal is a function T →
B that does not change an infinite number of times during

a finite time interval and that already has its new value at

a time instant of a value transition.1 A signal transition is

modeled by an event. Formally an event is a pair e = (t, x)
in (T ∪ {−∞}) × B. We call t the event’s time and x the

event’s value. We use “virtual events” at t = −∞ to simplify

notation when specifying initial values. An event list is a finite

or infinite sequence of events.

To every signal, there corresponds an event list (en) =
(tn, xn) with the following properties:

S1) There is always an initial event at time −∞.

1The requirement that a signal already has its new value when changing
values is merely a convention. On the other hand, the requirement that it
only changes a finite number of times during a finite time interval is more
fundamental to our model and thus, our results.



S2) The sequence (tn) of event times is strictly increasing

and discrete, with limn→∞ tn = ∞ if the event list is

infinite.

S3) Values are alternating: xn 6= xn+1

Conversely, every such event list corresponds to a unique

signal.

B. Channels, Constant Delay Channels

A channel c is a function mapping an input signal s to

an output signal c(s). The simplest class of channels is the

class of constant delay channels. A constant delay channel c
with delay parameter δ and initial value x ∈ B produces at its

output the input signal delayed by δ, i.e.,

c(s)(t) =

{

x if t < δ

s(t− δ) if t > δ .

C. Circuits, Executions

Circuits are obtained by interconnecting a set of input ports

and a set of output ports, forming the external interface of

a circuit, and a set of combinational gates via channels. We

constrain the way components are interconnected in a natural

way, by requiring that input ports are attached to one or more

channel inputs only (C4), and that both output ports and gate

inputs are attached to just one channel’s output (C5, C6); the

latter prevents channel outputs driving against each other.

Formally, a circuit is a tuple C = (G, I,O, c, n) such that

C1) G is a directed graph whose vertex set can be partitioned

as I ∪O ∪B.

C2) Every vertex b in B ((Boolean) gate) is assigned a

Boolean function B
d → B where d is the in-degree (i.e.,

the number of incoming neighbors) of b. By slight abuse

of notation, b also denotes the function assigned to b.
C3) c is a function that maps every edge (u, v) in G to its

corresponding channel cu,v .

C4) Every vertex in I (input ports) has in-degree 0.

C5) Every vertex in O (output ports) has in-degree 1.

C6) n is a function that maps every vertex v in G to a linearly

ordered subset nv = {v1, . . . , vdv
} of its in-neighbor

vertices in G, i.e., where edge (vi, v) for i = 1 up to

v’s in-degree dv is in G.

An execution of circuit C is an assignment of signals to

vertices that respects the channel functions and Boolean gate

functions.

Formally, an execution of circuit C is a collection of

signals sv for all vertices v of C such that the following

properties holds: If i is an input port, then there are no

restrictions on si. If o is an output port, then so = cv,o(sv)
where v is the unique incoming neighbor of o. Let now b
be a Boolean gate with d incoming neighbors v1, v2, . . . , vd,

ordered according to nb. We then apply, for each incoming

edge (vk, b), the channel cvk,b to signal svk
and check that

the signal value sb(t) is the gate’s Boolean combination of

these incoming signals at time t. That is, for all t ∈ T ,

sb(t) = b
(

cv1,b(sv1
)(t) , . . . , cvd,b(svd

)(t)
)

.

Not all circuits necessarily do have executions. For example,

the circuit comprising a single inverter gate whose output is

fed back to its input via a zero-delay channel does not have an

execution. Whenever we introduce a circuit (for a possibility

result), we will thus make sure that it allows for a unique

execution once the input signals are fixed. In case of positive

constant delay channels, this is always the case. In particular,

using inverter gates with non-zero constant delay feedback

channels, it is possible to produce perfect clock signals with

arbitrary rational duty cycles. Thus, synchronous circuits with

multiple clock sources whose phase shift can be precisely

defined by the circuit designer can be specified within our

circuit model. This obviously strengthens the impossibility

result of Section IV.

D. Short-Pulse Filtration

A pulse p of length ∆ > 0 at time T is a signal of the form

p(t) =

{

0 if t < T or t > T +∆

1 if T 6 t < T +∆ .

A signal contains a pulse of length ∆ > 0 at time T if its

event list contains the subsequent events (T, 1) and (T+∆, 0).
A circuit solves Short-Pulse Filtration (SPF) if it fulfills the

following conditions:

F1) It has exactly one input port i and exactly one output

port o.

F2) For every pulse p, there exists an execution that has p as

the input signal (i.e., si = p). (Well-formedness)

F3) In all executions, if the input signal is zero, then so is

the output signal. (No generation)

F4) There exist a pulse p such that, in all executions with p as

the input signal, the output signal is not the zero signal.

(Nontriviality)

F5) There exists an ε > 0 such that, in all executions, the

output signal does not contain a pulse of length less

than ε. (No short pulses)

A circuit solves bounded SPF if additionally:

F6) There exists a K > 0 such that, in all executions with a

pulse of length ∆ at time T as the input signal, the output

signal does not change anymore after time T +∆+K.

(Bounded stabilization time)

IV. UNSOLVABILITY OF SHORT-PULSE FILTRATION WITH

CONSTANT-DELAY CHANNELS

In this section, we present our first major result, namely

that no circuit whose channels are all positive constant-delay

channels solves SPF. The idea of the proof is to exploit the

fact that the value of the output signal of the circuit at each

time t only depends on a finite number of values of the input

signal at times t′ between 0 and t.
Calling each such time t′ a measure point for time t, we

show that indeed only a finite number of measure points exists

for time t, i.e., the circuit cannot distinguish two different

input signals that do not differ in the input signal values at

the measure points for time t: For both such input signals, the



output signal must have the same value at time t. Combining

this indistinguishability result with a shifting argument of the

input signal allows us to construct an arbitrary short pulse at

the output of the circuit, a contradiction to property (F5) of

Short-Pulse Filtration.

For each constant delay circuit with a single input port and

a single output port, we define its dependence graph, which

describes the way output signals depend on input signals:

Let C = (G, I,O, c,m) be a circuit with constant delay

channels, a single input port i, and a single output port o.

For every channel cu,v of C, denote by δ(u, v) its delay

parameter δ and by x(u, v) its initial value. The dependence

graph DG(t) of C at time t is a directed graph with ver-

tices (v, τ), where v is a vertex in G and τ a time. It is

defined as follows:

• The pair (o, 0) is a vertex of DG(t).
• If (v, τ) is a vertex of DG(t) and (u, v) is an edge in G

with τ+δ(u, v) 6 t, then the pair
(

u, τ+δ(u, v)
)

is also

a vertex of DG(t) and there is an edge in DG(t) from
(

u, τ + δ(u, v)
)

to (v, τ).
• If (v, τ) is a vertex of DG(t) and (u, v) is an edge in G

with τ + δ(u, v) > t, then x(u, v) is a vertex of DG(t)
and there is an edge in DG(t) from x(u, v) to (v, τ).

Because all δ(u, v) are strictly positive, the dependence

graphs are finite and acyclic. A vertex of DG(t) without

incoming neighbors is a leaf, all others intermediate vertices.

A vertex of the form (i, τ), with i ∈ I , is an input leaf and

we call the time t − τ the corresponding measure point for

time t. If DG(t) = DG(t̃), then the measure points for t are

exactly the measure points for t̃ shifted by the difference t− t̃.
All leaves of DG(t) are either input leaves or elements of B

(initial values of channels).

OR
δ = 1

x = 0
i

δ = 2

x = 0

δ = 1

x = 0
o

Fig. 2. Example circuit

(o, 0)(OR, 1)

(OR, 3)

(i, 2)

(OR, 5)

(i, 4)

0

(i, 6)

Fig. 3. Example dependence graph DG(6)

As an example, consider the circuit shown in Fig. 2. The

dependence graph DG(6) is shown in Fig. 3. Leaves are

depicted as filled nodes, while intermediate nodes are empty.

From the construction of the graph, we immediately see that

in each execution the output signal value so(6) only depends

on the three input signal values si(4), si(2), and si(0).

p(t)

t

S T

p
p+

p̃+

ε ε

Fig. 4. Input pulse p, together with its derived pulses p+ and p̃+, and measure
points for time t̃

Generalizing this observation, we obtain:

Lemma 1. The value of the output signal at time t only

depends on the values of the input signal at the measure points

for time t, according to DG(t).
Furthermore, if DG(t) = DG(t̃) and the values of input

signals si and s̃i coincide at the respective measure points for t
and t̃, then the respective output signals fulfill so(t) = s̃o(t̃).

Due to the fact that there are only finitely many measure

points for a given time t, they are discrete and hence there is

always a small margin until a new measure point appears:

Lemma 2. For every t ∈ T there exists an ε > 0 such that

DG(t) = DG(t+ ε′) for all 0 ≤ ε′ ≤ ε.

In the rest of this section, we prove the following impossi-

bility result.

Theorem 1. No circuit with positive constant delay channels

solves SPF.

Assume by contradiction that circuit C solves SPF. By the

nontriviality property (F4), there exists an input pulse such that

the corresponding output signal is non-zero, i.e., there exists

an input pulse and a time t such that the corresponding output

signal’s value at time t is 1.

By Lemma 2, there exists an ε > 0 such that DG(t) =
DG(t + ε). We may choose ε arbitrarily small, in particular

strictly smaller than all differences of distinct measure points

for time t. Choose t̃ = t + ε/2 to be the midpoint of the

interval [t, t+ ε] and denote by ∆ the infimum of input pulse

lengths such that the corresponding output signal’s value at

time t̃ is 1. This infimum is finite by the choice of t and t̃.
Now let p be a pulse of length slightly larger than ∆, with

an upward transition at time S and a downward transition at

time T . We can choose p’s length in such a way that the

output value at time t̃ is 0 whenever we shorten p’s length

by ε/2. This implies that there exists one measure point for

time t̃ between T − ε/2 and T . (See shortened pulse p+ and

the marked measure point on the right in Fig. 4.) Because ε
was chosen to be smaller than the distance between any two

measure points for t̃, there is no measure point for t̃ between T
and T + ε/2.

Similarly, there is one measure point for time t̃ between S
and S + ε/2, and none between S − ε/2 and S (see Fig. 4).

Now consider the pulse p̃+ generated by shifting pulse p
into the past by ε/2, i.e., p̃+’s upwards transition is at time S−
ε/2 and its downwards transition at T − ε/2. Because p̃+



coincides with p+ at all measure points for t̃, the output signal

corresponding to p̃+ has value 0 at time t̃. Because DG(t̃) =
DG(t̃+ε/2), part two of Lemma 1 shows that sp(t̃+ε/2) = 0.

Likewise, by considering p shifted into the future by ε/2,

we see that also sp(t̃ − ε/2) = 0. But because sp(t̃) = 1,

this shows that the output signal sp contains a pulse of length

strictly less than ε. Since ε can be chosen arbitrarily small,

we have proved Theorem 1.

V. POSSIBILITY OF SHORT-PULSE FILTRATION IN

PHYSICAL SYSTEMS

In this section, we will reconsider the SPF problem in

the model of [3], which matches physical circuits. In sharp

contrast to the impossibility of implementing unbounded SPF

in our binary model with constant delay channels established

in Theorem 1, we will show in Theorem 2 that it is possible

to build such a circuit in reality.

The model of Marino [3] considers circuits, which process

signals with both continuous value-domain and continuous

time-domain. Accordingly, we assume (normalized) signal

voltages to be within [0, 1], and denote by L0 = [0, l0] resp.

L1 = [l1, 1], with 0 < l0 < l1 < 1, the signal ranges that are

interpreted as logical 0 resp. logical 1 by a circuit.

A physical circuit with one input signal i and one output

signal o, reset at time 0 to a predefined state, solves Short-

Pulse Filtration (SPF) if it satisfies the natural generalizations

of Properties (F1) – (F5) defined in Section III-D. In particular,

(F5) [which prohibits output pulse with duration < ε] says that

if the output signal is not interpreted as logical 1 at two points

in time t and t′ with t′ − t < ε, then it is not logical 1 at any

time in between t and t′.
A physical circuit that solves SPF can be implemented by

combining a simple storage loop (like the one shown in Fig. 2)

and a high-threshold buffer acting as a metastability filter (see,

e.g., [15, p. 40]): It is easy to see that the properties of SPF

are fulfilled for input signals that are either constant 0 or

pulses of a duration longer than the delay of the feedback

loop. According to [3], short pulses may drive the storage

loop into a metastable internal state for an unbounded time,

however. It may hence produce an output signal within some

region of metastable output values [v−M , v+M ] ⊂ [0, 1] during an

unbounded time; the values v−M , and v+M depend on technology

parameters. However, since it is possible to compute safe

bounds V −

M , and V +
M such that [v−M , v+M ] ⊂ [V −

M , V +
M ] ⊂ [0, 1],

a subsequent high-threshold buffer with threshold larger than

V +
M can be used to map any metastable internal state to logical

0 at the output, which effectively prohibits short pulses at the

output. Hence, we obtain:

Theorem 2. There is a physical circuit that solves SPF.

VI. SINGLE-HISTORY CHANNELS

This section formally introduces the notion of a single-

history channel in the binary circuit model. They are a gen-

eralization of constant-delay channels that cover all existing

channel models for binary circuit models we are aware of.

Intuitively, a single-history channel propagates each event at

time t of the input signal to an event at the output happening

after some output-to-input delay δ(T ), which depends on

the input-to-previous-output delay T = t − t′. Note that T
is positive if the channel delay is short compared to the

input signal transition times, and negative otherwise. Fig. 5

illustrates this relation and the involved delays. In case FIFO

order would be invalidated, i.e., t + δ(T ) 6 t′, such that the

next output event would not occur after the previous one, both

events annihilate.

There exist two variants of single-history channels in the

literature, depending on whether the time of an annihilated

event is remembered or not. We dub these two variants

forgetful and non-forgetful single-history channels, which we

both formally define below. At the end of this section, we give

a list of channel models that are special cases of our definition

of a single-history channel.

s(t)

t

t

c(s)(t)

t

t′ t+δ(T )

δ(T )

−T

Fig. 5. Input/output signal of a single-history channel, involving the input-
to-previous-output delay T and the resulting output-to-input delay δ(T )

Formally, a single-history channel c is characterized by an

initial value x ∈ B, a nondecreasing delay function δ : R → R

such that δ(∞) = limT→∞ δ(T ) is finite, and the fact whether

it is forgetful or not. We detail the channel behavior in the next

two subsections.

A. Forgetful Single-History Channels

This class of channels includes the classical inertial delay

channels as used, for example, in VHDL simulators [16].

Their behavior is defined by the following algorithm: Let s
be a signal and let

(

(tn, xn)
)

n
be its event list, the input list.

The algorithm iterates the input list and updates the output

list, which will define the channel’s output signal c(s).
Initially, let (−∞, x) be the sole element of the output list.

In its nth iteration, the algorithm considers input event (tn, xn)
and modifies the output list accordingly:

1) Denote by (t′n, x
′

n) be the last event in the output list.

If xn = x′

n, then input event (tn, xn) has no effect:

Proceed to the (n+ 1)th iteration.

2) Otherwise, let Tn = tn − t′n be the difference of input

and output event times. (Note that Tn = ∞ is possible. In

this case δ(Tn) = δ(∞) = limT→∞ δ(T ), which is finite

by assumption.) If tn + δ(Tn) > t′n, then add the event
(

tn + δ(Tn), xn

)

to the output list. If tn + δ(Tn) 6 t′n,

then delete the event (t′n, x
′

n) from the output list.

The output sequence’s first event is always (−∞, x), its

sequence of event times is strictly increasing, and its sequence

of values is alternating.



If the input list is finite, the algorithm halts. If not, the

output sequence nonetheless stabilizes in the sense that, for

every time t, there exists some N such that all iterations with

n > N make no changes to the output sequence at times 6 t.
This property makes the limit output list as n tends to infinity

well-defined, and one may define the output signal by:

Definition 1. For input signal s, the output signal c(s) of the

forgetful single-history channel c is the signal whose event

list is S after deleting all events with finite negative times and

the first non-negative time event if its value is equal to the

channel’s initial value x.

B. Non-Forgetful Single-History Channels

The PID channel introduced by Bellido-Dı́az et al. [2] is not

covered by the above forgetful single-history channels, since it

has been designed to reasonably match analog RC waveforms.

Since the resulting exponential functions do not “forget” sub-

threshold pulses, they cannot be modeled via delay functions

δ(T ) that depend on the input-to-previous output delay T . To

also cover the PID model, we hence introduce non-forgetful

single-history channels, the delay function of which may also

depend on the last annihilated event.

The algorithm for non-forgetful channels thus maintains

an additional variable r, which, in each iteration, contains

the time of the potential output event considered in the last

iteration. It was first presented by Bellido-Dı́az et al. [2,

Fig. 13]. Similar to the forgetful case, it determines the output

signal c(s) of a non-forgetful single-history channel c, given

input signal s with corresponding input event list
(

(tn, xn)
)

n
,

as follows:

Initially, the output list contains (−∞, x) and r = r−1 =
−∞. In its nth iteration, the algorithm considers input

event (tn, xn) and modifies the output list accordingly:

1) Equivalent to rule (1) of forgetful channels.

2) Otherwise, let Tn = tn − rn−1 be the difference of input

and most recent potential output event times, and set rn =
tn + δ(Tn). If tn + δ(Tn) > rn−1, then add the event
(

tn+δ(Tn), xn

)

to the output list. If tn+δ(Tn) 6 rn−1,

then delete the event (t′n, x
′

n) from the output list.

Again, the output sequence’s first event is always (−∞, x),
its sequence of event times is strictly increasing, and its

sequence of values is alternating. Moreover, the algorithm’s

final output list S is eventually stabilizing and hence well-

defined, in the same sense as for forgetful channels, which

finally allows to also carry over Definition 1 for the resulting

output signal.

C. Examples of Single-History Channels

Below, we summarize how the existing binary-value models

are mapped to our single-history channels:

A classical pure-delay channel is a single-history channel

whose delay function δ is constant and positive. The behavior

of a pure-delay channel does not depend on the fact whether

it is forgetful or not.

An inertial channel is a forgetful single-history channel

whose delay function δ is of the form

δ(T ) =

{

δ0 if T > T0

−T0 if T 6 T0

for parameters δ0 > 0 and T0 > −δ0. An inertial channel

filters an incoming pulse if and only if its pulse length is less

or equal to T0 + δ0; otherwise, it is forwarded with delay δ0.

The PID-channels of Bellido-Dı́az et al. [2] are non-

forgetful with delay function

δ(T ) = tp0 ·
(

1− e−(T−T0)/τ
)

for certain (measured) positive parameters tp0, τ , and T0.

VII. BOUNDED SHORT-PULSE FILTRATION WITH A

SINGLE NON-CONSTANT DELAY CHANNEL

In this section, we present our second major result, namely

that bounded SPF is solvable as soon as there is a single non-

constant delay single-history channel available. More specifi-

cally, we prove that, given a single-history channel with non-

constant delay, there exists a circuit that uses only constant

delay channels apart from the given non-constant channel

and that solves bounded SPF. The proof is split into two

parts, depending on whether the given non-constant channel

is forgetful or not. The forgetful case allows an easier proof.

In the remainder of this section, let c∗ be a single-history

channel that is not a constant delay channel. What we actually

require is that its delay function δ is non-constant for T >
−δ(∞), since smaller arguments cannot occur due to Tn >
−δ(∞) in every step of the channel algorithm. Without loss

of generality, we can assume that the initial value of c∗ is 0,

as we could modify the circuits used in the subsequent proofs

by negating signals at appropriate places otherwise.

A. Forgetful Channels

Consider circuit Cff , obtained from the circuit shown in

Fig. 2 by replacing the feedback channel with a constant delay

channel with delay δ = ε and the channel connnecting the OR

gate output and o with a forgetful channel c∗.

OR
δ = 1

x = 0
i

δ = ε

x = 0

c∗
o

Fig. 6. Circuit Cff

We will show that the storage loop Cff shown in Fig. 6

solves bounded SPF. It remains to describe how to choose the

delay parameter ε > 0. First, one can observe that for each

forgetful single-history channel c, there exists some γ(c) > 0
such that c(s) is the zero signal whenever s is a pulse of length

less than γ(c). Specifically, we can choose

γ(c) = inf
{

∆ > 0 | ∆− δ(∞) + δ
(

∆− δ(∞)
)

> 0
}

.



AND

OR

δ = 1

x = 0

δ = ε

x = 0

δ = 1

x = 0
o

δ = 1

x = 0

δ = ε′

x = 0

c∗
i

ε′ = max(0, δ− − δinf)

0 < ε < δ∞ − δinf − ε′

Fig. 7. Circuit CNC used in Case 1

CLKA OR

AND AND

CLKC CLKF

c∗

δ = 1

x = 0
o

δ = 2

x = 0

δ = 2

x = 0

δ = 1

x = 0
i

δ = 1

x = 0

δ = 1

x = 0

Fig. 8. Circuit CNF used in Case 2

More generally, if signal s does not contain pulses of length

greater or equal to γ(c), then c(s) is the zero signal, according

to the following Lemma 3.

Lemma 3. Let c be a non-constant delay forgetful single-

history channel with initial value 0. Let s be a signal not

containing pulses of length greater or equal to γ(c) and that is

not eventually continuously at 1. Then, c(s) is the zero signal.

Note that Lemma 3 does fundamentally not hold for general

non-forgetful channels.

For the delay parameter ε in circuit Cff , we choose 0 <
ε < γ(c∗). If the input signal of Cff is a pulse of length at

least ε, then the signal sOR at the output of the OR gate, and

hence the circuit’s output o, is eventually stable at 1 because

of the ε-delay feedback loop. If the circuit’s input signal is

a pulse of length ∆ < ε, then sOR only contains pulses of

length ∆ < γ(c∗), from which it follows by Lemma 3 that

the circuit’s output signal is always zero. Hence, we obtain:

Theorem 3. Let c∗ be a non-constant delay forgetful single-

history channel. Then there exists a circuit solving bounded

SPF whose channels are all constant delay channels or c∗.

B. Non-Forgetful Channels

Theorem 4 reveals that a single non-constant delay non-

forgetful single-history channel c∗ also allows to solve

bounded SPF:

Theorem 4. Let c∗ be a non-constant delay non-forgetful

single-history channel. Then there exists a circuit solving SPF

whose channels are all either constant delay channels or c∗.

The proof idea is as follows: Denote by δ∞ = δ(∞) =
limt→∞ δ(t) and by δinf = limt→0+ δ(−δ∞ + t) the right-

sided limit of δ at −δ∞. Since c∗ has non-constant delay, we

have δinf < δ∞. We distinguish two cases, depending on the

behavior of δ at −δinf :

1) δ(t) = δ∞ for all t > −δinf and δ− = limt→0− δ(−δinf+
t) < δ∞, i.e., δ is non-continuous at −δinf .

2) All other δ.

For Case (1), we can prove that circuit CNC depicted in

Fig. 7 solves bounded SPF. It is based on the following

idea: Since one can show that c∗ does not produce pulses of

length within the non-empty interval [max(0, δ−−δinf), δ∞−
δinf), it suffices to filters out all pulses with duration less

than max(0, δ− − δinf) (ensured by the AND gate) and

continuously hold all pulses of length at least δ∞− δinf (done

by the OR gate).

For Case (2), the more involved circuit CNF depicted in

Fig. 8 can be proved to solve bounded SPF. It uses three

periodic clocks CLKA/C/F , running at the same frequency

but with different duty cycles, which can easily be built from

constant delay channels and inverters. Their purpose is to

separate time into consecutive phases A–F (where E and F
are actually overlapping with A). The durations A–F of the

corresponding phases are chosen in accordance with δ.

The clock period of all clocks is A+B + C +D, and the

duty cycle of CLKC is designed such that its output signal

is 0 during [τk, τk +A+B) ∪ [τk +A+B +C, τk+1) and 1
during [τk+A+B, τk+A+B+C). Similarly, CLKA’s output

is 1 during [τk, τk +A) and 0 during [τk +A, τk+1), whereas

CLKF ’s output is 0 during [τk, τk +E)∪ [τk +E+F, τk+1)
and 1 during [τk + E, τk + E + F ).

Time is divided into consecutive rounds [τk, τk+1) with

τk = k(A + B + C + D). Setting tk = τk + 2, the phases

of round k are [tk, tk +A) (phase A), [tk +A, tk +A+B)
(phase B), [tk + A + B, tk + A + B + C) (phase C), and

[tk +A+B+C, tk +A+B+C+D) (phase D); phase F is

the interval [tk+E, tk+E+F ). The value of the output sOR of

the OR gate during phase A is always 1, and during phases B
and D it is always 0. During phase C, it is either 0 or contains

a pulse, depending on the input signal i. Note carefully that

pulses at i can only show up at sOR when they occur in

phase C of some round.

The main arguments of the proof that CNF solves bounded

SPF are as follows: Properties (F1) and (F2) trivially hold. As

for (F3), if the circuit’s input signal is 0, then the channel’s

input signal sOR is 0 during phase C of all rounds k ≥ 0 as

well. It can be proved (see below) that if this is the case, then

the channel’s output signal sc∗(OR) during phase F is 0 for

all rounds k ≥ 0. Since phase F is the only phase where o
could possibly produce a non-0 output due to the AND gate,

both (F3) and (F5) follow. Property (F4) is implied by the

fact that there exists an input signal i such that sOR contains

a pulse during phase C of some round k ≥ 0: If this is the

case, one can show that c∗’s output signal is 1 during the entire

phase F of some round. Finally, Property (F6) follows from

the fact that all delays are bounded.

Figures 9 and 10 depict the input sOR and the output



sOR(t)

t

tk A B C D A

sc∗(OR)(t)

t

tk A+B + C +D + E F

δ0
δ1 δ2

Fig. 9. Case 2: In- and Output of c∗ in circuit CNF without pulse in phase C

sOR(t)

t

tk A B C D A

x

sc∗(OR)(t)

t

tk A+B + C +D + E F

δ′0
δ′1 δ′2 δ′3 δ′4

Fig. 10. Case 2: In- and Output of c∗ in circuit CNF with pulse in phase C

sc∗(OR) of the channel in the absence and in the presence of

a pulse in phase C. By suitably choosing the phase durations

A–F , it is guaranteed that if a pulse of length x ≤ C occurs

during phase C (of round k), it is canceled, i.e., x+ δ′3 ≤ δ′2.

However, the output event delayed by δ′3 affects the delay δ′4
of the next output event, no matter how short x was: Instead

of being delayed by δ2, it is delayed by δ′4 < δ2, thus

being scheduled before the beginning of output phase F (of

round k + 1).

VIII. IMPOSSIBILITY OF BOUNDED SHORT-PULSE

FILTRATION IN PHYSICAL SYSTEMS

Similar to Section V, we will now contrast the possibility

of solving bounded SPF in our binary model with non-

constant delay channels established in Theorems 3 and 4 by

the impossibility of building such a circuit in reality, as proved

in Theorem 6 below.

The proof is by reduction to the non-existence of a physical

bistable storage element that stabilizes within bounded time

in the model of [3]. A (single-input) bistable element is a

physical circuit with input port i and output port o that,

under the assumption that its input signal is either always 0
or a single positive pulse, fulfills (the physical variants of)

Properties (F1) – (F4) of SPF as well as (F5’): If the output is

logical 1 at some time t, it also remains logical 1 at all times

larger than t. For a (single-input) bistable element stabilizing

within bounded time, additionally (F6) has to hold. For the

non-existence of such a circuit, we can utilize a classical result:

Theorem 5 (Marino [3, Theorem 3]). For all single-input

bistable elements, all times t ≥ 0 and all times T > 0, there

is a time t2 > t1 such that an input signal that is continuously

0 during time [0, t1), continuously 1 during time [t1, t2),
and again continuously 0 from time t2 on (that is, a pulse),

makes the bistable element’s output o switch from logical 0 to

logical 1 after time t+ T .

Now assume, for the sake of a contradiction, the existence a

physical circuit solving bounded SPF and consider the circuit

shown in Fig. 11, with the NOR’s initial output equal to 1 and

the inverter’s initial output equal to 0 at time t = 0.

NORSPFi

o

Fig. 11. Building a bistable storage element from a circuit solving SPF

It is not difficult to prove that this circuit implements a

single-input bistable element stabilizing within bounded time:

In case the input signal i is always 0, the SPF’s output signal

will always be logical 0 due to property (F3) of the SPF. Thus

the circuit shown in Fig. 11 will always drive a logical 0 at its

output, which confirms property (F3) for the bistable element.

Now let u be an input pulse i that makes the SPF circuit

produce a logical 1 at its output, which exists due to prop-

erty (F4) of the SPF. By definition, u is 0 during [0, t1) and

[t2,∞) and 1 during [t1, t2) for some t1, t2 ∈ R
+
0 . Letting t′

be the first time the SPF circuit drives a logical 1 at its

output, its output must remain logical 1 within [t′, t′ + ε]
for some ε > 0 due to property (F5) of the SPF stated in

Section V. Assuming that the signal propagation delay of the

NOR gate and the inverter is short enough for the inverter’s

output to reach a logical 1 before time t′ + ε, the NOR

gate will subsequently drive a logical 0 on its output forever,

irrespectively of the output of the SPF circuit. The circuit’s

output signal o will hence continuously remain logical 1 once

it switched to logical 1, which also confirms Properties (F4)

and (F6) of the bistable element.

Due to the usage of a circuit solving bounded SPF (F6)

in the compound circuit, we further obtain that there exists

some T > 0 such that, for any input pulse u′ that switches to

logical 1 by time t, the circuit shown in Fig. 11 produces

a logical 1 by time t + T . This is a contradiction to the

non-existence of a single-input bistable element stabilizing in

bounded time.

We hence obtain our claimed result:

Theorem 6. No physical circuit solves bounded SPF.

IX. CONCLUSION

We have shown that binary circuit models using single-

history channels fail to faithfully model glitch propagation.

This includes all binary models known to date. Either channels

have constant delay and SPF is not solvable, which is in

contradiction to Newtonian reality. Or there is a non-constant

delay channel and even bounded SPF is solvable, which is also



in contradiction to Newtonian reality. Future binary models

that faithfully model glitch propagation hence cannot have

the single-history property. This provides a signpost for future

research on circuit models.
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[13] M. Függer and U. Schmid, “Reconciling Fault-Tolerant Distributed
Computing and Systems-on-Chip,” Distributed Computing, vol. 24,
no. 6, pp. 323–355, Jan. 2012.
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