6,621 research outputs found
Spatial and temporal variation in organic acid anion exudation and nutrient anion uptake in the rhizosphere of Lupinus albus L
We investigated in situ the temporal patterns and spatial extent of organic acid anion exudation into the rhizosphere solution of Lupinus albus, and its relation with the nutrient anions phosphate, nitrate and sulfate by means of a rhizobox micro suction cup method under P sufficient conditions. We compared the soil solution in the rhizosphere of cluster roots with that in the vicinity of normal roots, nodules and bulk soil. Compared to the other rhizosphere and soil compartments, concentrations of organic acid anions were higher in the vicinity of cluster roots during the exudative burst (citrate, oxalate) and nodules (acetate, malate), while concentrations of inorganic nutrient anions were highest in the bulk soil. Both active cluster roots and nodules were most efficient in taking up nitrate and phosphate. The intensity of citrate exudation by cluster roots was highly variable. The overall temporal patterns during the lifetime of cluster roots were overlaid by a diurnal pattern, i.e. in most cases, the exudation burst consisted of one or more peaks occurring in the afternoon. Multiple exudation peaks occurred daily or were separated by 1 or 2days. Although citrate concentrations decreased with distance from the cluster root apex, they were still significantly higher at a distance of 6 to 10mm than in the bulk soil. Phosphate concentrations were extremely variable in the proximity of cluster roots. While our results indicate that under P sufficient conditions cluster roots take up phosphate during their entire life time, the influence of citrate exudation on phosphate mobilization from soil could not be assessed conclusively because of the complex interactions between P uptake, organic acid anion exudation and P mobilization. However, we observed indications of P mobilization concurrent with the highest measured citrate concentrations. In conclusion, this study provides semiquantitative in situ data on the reactivity of different root segments of L. albus L. in terms of root exudation and nutrient uptake under nutrient sufficient conditions, in particular on the temporal variability during the lifetime of cluster root
Seismic modeling using the frozen Gaussian approximation
We adopt the frozen Gaussian approximation (FGA) for modeling seismic waves.
The method belongs to the category of ray-based beam methods. It decomposes
seismic wavefield into a set of Gaussian functions and propagates these
Gaussian functions along appropriate ray paths. As opposed to the classic
Gaussian-beam method, FGA keeps the Gaussians frozen (at a fixed width) during
the propagation process and adjusts their amplitudes to produce an accurate
approximation after summation. We perform the initial decomposition of seismic
data using a fast version of the Fourier-Bros-Iagolnitzer (FBI) transform and
propagate the frozen Gaussian beams numerically using ray tracing. A test using
a smoothed Marmousi model confirms the validity of FGA for accurate modeling of
seismic wavefields.Comment: 5 pages, 8 figure
CMS Software Distribution on the LCG and OSG Grids
The efficient exploitation of worldwide distributed storage and computing
resources available in the grids require a robust, transparent and fast
deployment of experiment specific software. The approach followed by the CMS
experiment at CERN in order to enable Monte-Carlo simulations, data analysis
and software development in an international collaboration is presented. The
current status and future improvement plans are described.Comment: 4 pages, 1 figure, latex with hyperref
An oversimplification of physiological principles leads to flawed macroecological analyses
Macrophysiological analyses are useful to predict current and future range limits and improve our understanding of endotherm macroecology, but such analyses too often rely on oversimplifications of endothermic thermoregulatory and energetic physiology, which lessens their applicability. We detail some of the major issues with macrophysiological analyses based on the classic Scholander–Irving model of endotherm energetics in the hope that it will encourage other research teams to more appropriately integrate physiology into macroecological analyses
Electronic and Magnetic Properties of Partially-Open Carbon Nanotubes
On the basis of the spin-polarized density functional theory calculations, we
demonstrate that partially-open carbon nanotubes (CNTs) observed in recent
experiments have rich electronic and magnetic properties which depend on the
degree of the opening. A partially-open armchair CNT is converted from a metal
to a semiconductor, and then to a spin-polarized semiconductor by increasing
the length of the opening on the wall. Spin-polarized states become
increasingly more stable than nonmagnetic states as the length of the opening
is further increased. In addition, external electric fields or chemical
modifications are usable to control the electronic and magnetic properties of
the system. We show that half-metallicity may be achieved and the spin current
may be controlled by external electric fields or by asymmetric
functionalization of the edges of the opening. Our findings suggest that
partially-open CNTs may offer unique opportunities for the future development
of nanoscale electronics and spintronics.Comment: 6 figures, to appear in J. Am. Chem. So
A valley-spin qubit in a carbon nanotube
Although electron spins in III-V semiconductor quantum dots have shown great
promise as qubits, a major challenge is the unavoidable hyperfine decoherence
in these materials. In group IV semiconductors, the dominant nuclear species
are spinless, allowing for qubit coherence times that have been extended up to
seconds in diamond and silicon. Carbon nanotubes are a particularly attractive
host material, because the spin-orbit interaction with the valley degree of
freedom allows for electrical manipulation of the qubit. In this work, we
realise such a qubit in a nanotube double quantum dot. The qubit is encoded in
two valley-spin states, with coherent manipulation via electrically driven spin
resonance (EDSR) mediated by a bend in the nanotube. Readout is performed by
measuring the current in Pauli blockade. Arbitrary qubit rotations are
demonstrated, and the coherence time is measured via Hahn echo. Although the
measured decoherence time is only 65 ns in our current device, this work offers
the possibility of creating a qubit for which hyperfine interaction can be
virtually eliminated
Theory of tunneling conductance for normal metal/insulator/triplet superconductor junctions
Tunneling conductance spectra of normal metal/insulator/triplet
superconductor junctions are investigated theoretically. As triplet paring
states we select several types of symmetries that are promising candidates for
the superconducting states in UPt and in SrRuO. The
calculated conductance spectra are sensitive to the orientation of the junction
which reflects the anisotropy of the pairing states. They show either zero-bias
conductance peaks or gap-like structures depending on the orientation of the
junctions. The existence of a residual density of states, peculiar to
nonunitary states, is shown to have a significant influence on the properties
of the conductance spectra. Present results serve as a guidefor the
experimental determination of the symmetry of the pair potentials in UPt
and SrRuO.Comment: 10 pages, 11 eps figures, J.Phys.Soc.Jpn.67,No.9(1998
Effect of transport-induced charge inhomogeneity on point-contact Andreev reflection spectra at ferromagnet-superconductor interfaces
We investigate the transport properties of a ferromagnet-superconductor
interface within the framework of a modified three-dimensional
Blonder-Tinkham-Klapwijk formalism. In particular, we propose that charge
inhomogeneity forms via two unique transport mechanisms, namely, evanescent
Andreev reflection and evanescent quasiparticle transmission. Furthermore, we
take into account the influence of charge inhomogeneity on the interfacial
barrier potential and calculate the conductance as a function of bias voltage.
Point-contact Andreev reflection (PCAR) spectra often show dip structures,
large zero-bias conductance enhancement, and additional zero-bias conductance
peak. Our results indicate that transport-induced charge inhomogeneity could be
a source of all these anomalous characteristics of the PCAR spectra.Comment: 9 pages, 6 figure
Coherent, mechanical control of a single electronic spin
The ability to control and manipulate spins via electrical, magnetic and
optical means has generated numerous applications in metrology and quantum
information science in recent years. A promising alternative method for spin
manipulation is the use of mechanical motion, where the oscillation of a
mechanical resonator can be magnetically coupled to a spins magnetic dipole,
which could enable scalable quantum information architectures9 and sensitive
nanoscale magnetometry. To date, however, only population control of spins has
been realized via classical motion of a mechanical resonator. Here, we
demonstrate coherent mechanical control of an individual spin under ambient
conditions using the driven motion of a mechanical resonator that is
magnetically coupled to the electronic spin of a single nitrogen-vacancy (NV)
color center in diamond. Coherent control of this hybrid mechanical/spin system
is achieved by synchronizing pulsed spin-addressing protocols (involving
optical and radiofrequency fields) to the motion of the driven oscillator,
which allows coherent mechanical manipulation of both the population and phase
of the spin via motion-induced Zeeman shifts of the NV spins energy. We
demonstrate applications of this coherent mechanical spin-control technique to
sensitive nanoscale scanning magnetometry.Comment: 6 pages, 4 figure
- …