5,821 research outputs found

    T-loop phosphorylation of Arabidopsis CDKA;1 is required for its function and can be partially substituted by an aspartate residue

    Get PDF
    As in other eukaryotes, progression through the cell cycle in plants is governed by cyclin-dependent kinases. Phosphorylation of a canonical Thr residue in the T-loop of the kinases is required for high enzyme activity in animals and yeast. We show that the Arabidopsis thaliana Cdc21/Cdc28 homolog CDKA; 1 is also phosphorylated in the T-loop and that phosphorylation at the conserved Thr-161 residue is essential for its function. A phospho-mimicry T161D substitution restored the primary defect of cdka; 1 mutants, and although the T161D substitution displayed a dramatically reduced kinase activity with a compromised ability to bind substrates, homozygous mutant plants were recovered. The rescue by the T161D substitution, however, was not complete, and the resulting plants displayed various developmental abnormalities. For instance, even though flowers were formed, these plants were completely sterile as a result of a failure of the meiotic program, indicating that different requirements for CDKA; 1 function are needed during plant development

    Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Get PDF
    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid-A nd high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion, surface ozone and tropospheric chemistry would likely be affected by SRM, but the overall effect is strongly dependent on the SRM scheme. Due to the health and economic impacts of surface ozone, all these impacts should be taken into account in evaluations of possible consequences of SRM

    Bone mineral content in Hawaiian, Asian, and Filipino children.

    Get PDF
    Os calcis bone mineral content (BMC) was measured by single photon absorptiometry in 86 children, ages 6 to 13 years from Hawaiian, Oriental, Caucasian, and Filipino ethnic groups. Pearson correlations indicated significant positive correlations between BMC and age, height, and weight. However, there were no significant differences in age, height or weight between ethnic groups. ANOVA revealed a significant effect of ethnic group on BMC with the Hawaiian group having a significantly higher BMC than the Asian or Caucasian groups. When age, height and weight were controlled for, ANCOVA still showed a significant effect of ethnicity on BMC. The current findings suggest that ethnic differences can develop early in life

    CMS Software Distribution on the LCG and OSG Grids

    Full text link
    The efficient exploitation of worldwide distributed storage and computing resources available in the grids require a robust, transparent and fast deployment of experiment specific software. The approach followed by the CMS experiment at CERN in order to enable Monte-Carlo simulations, data analysis and software development in an international collaboration is presented. The current status and future improvement plans are described.Comment: 4 pages, 1 figure, latex with hyperref

    Detection of Orbital Fluctuations Above the Structural Transition Temperature in the Iron-Pnictides and Chalcogenides

    Get PDF
    We use point contact spectroscopy to probe AEFe2As2\rm{AEFe_2As_2} (AE=Ca,Sr,Ba\rm{AE=Ca, Sr, Ba}) and Fe1+yTe\rm{Fe_{1+y}Te}. For AE=Sr,Ba\rm{AE=Sr, Ba} we detect orbital fluctuations above TST_S while for AE=Ca these fluctuations start below TST_S. Co doping preserves the orbital fluctuations while K doping suppresses it. The fluctuations are only seen at those dopings and temperatures where an in-plane resistive anisotropy is known to exist. We predict an in-plane resistive anisotropy of Fe1+yTe\rm{Fe_{1+y}Te} above TST_S. Our data are examined in light of the recent work by W.-C. Lee and P. Phillips (arXiv:1110.5917v2). We also study how joule heating in the PCS junctions impacts the spectra. Spectroscopic information is only obtained from those PCS junctions that are free of heating effects while those PCS junctions that are in the thermal regime display bulk resistivity phenomenon.Comment: Accepted for publication in Physical Review

    Point-contact spectroscopy on URu2_2Si2_2

    Full text link
    Tunnel and point contact experiments have been made in a URu2_2Si2_2 single crystal along the c-axis. The experiments were performed changing temperature and contact size in a low temperature scanning tunneling microscope. A resonance develops at the Fermi level at T60T\sim 60 K. This resonance splits and becomes asymmetric when the 17.5 K phase transition is crossed. These results are consistent with the existence of Kondo like bound states of the U4+^{4+} ionic configurations and the conduction electrons. Below the transition, these configurations are split by the development of quadrupolar ordering. The peak separation can be interpreted as a direct measurement of the order parameter. Measurements on a policrystalline UAu_2Si_2$ sample are also reported, with a comparative study of the behavior of both materials.Comment: 4 pages (Latex) + 2 postscript figure

    Valley-spin blockade and spin resonance in carbon nanotubes

    Full text link
    Manipulation and readout of spin qubits in quantum dots made in III-V materials successfully rely on Pauli blockade that forbids transitions between spin-triplet and spin-singlet states. Quantum dots in group IV materials have the advantage of avoiding decoherence from the hyperfine interaction by purifying them with only zero-spin nuclei. Complications of group IV materials arise from the valley degeneracies in the electronic bandstructure. These lead to complicated multiplet states even for two-electron quantum dots thereby significantly weakening the selection rules for Pauli blockade. Only recently have spin qubits been realized in silicon devices where the valley degeneracy is lifted by strain and spatial confinement. In carbon nanotubes Pauli blockade can be observed by lifting valley degeneracy through disorder. In clean nanotubes, quantum dots have to be made ultra-small to obtain a large energy difference between the relevant multiplet states. Here we report on low-disorder nanotubes and demonstrate Pauli blockade based on both valley and spin selection rules. We exploit the bandgap of the nanotube to obtain a large level spacing and thereby a robust blockade. Single-electron spin resonance is detected using the blockade.Comment: 31 pages including supplementary informatio
    corecore