345 research outputs found
Evolution of a black hole-inhabited brane close to reconnection
Last moments of a mini black hole escaping from a brane are studied. It is
argued that at the point of reconnection, where the piece of the brane attached
to the black hole separates from the rest, the worldsheet of the brane becomes
isotropic (light-like). The degenerate mode of evolution, with the worldsheet
isotropic everywhere, is investigated. In particular, it is shown that the
brane approaches the reconnection point from below if it reconnects within a
certain limit distance, and from above if it reconnects beyond that distance.
The rate of relaxation to the degenerate mode is established. If the dimension
of the brane is , the nondegeneracy, measured by the determinant of the
relevant part of the induced metric tensor, falls down as (latitudinal
angle).Comment: 20 pages, 4 figure
Stability with respect to domain of the low Mach number limit of compressible viscous fluids
We study the asymptotic limit of solutions to the barotropic Navier-Stokes
system, when the Mach number is proportional to a small parameter \ep \to 0
and the fluid is confined to an exterior spatial domain \Omega_\ep that may
vary with \ep. As , it is shown that the fluid
density becomes constant while the velocity converges to a solenoidal vector
field satisfying the incompressible Navier-Stokes equations on a limit domain.
The velocities approach the limit strongly (a.a.) on any compact set, uniformly
with respect to a certain class of domains. The proof is based on spectral
analysis of the associated wave propagator (Neumann Laplacian) governing the
motion of acoustic waves.Comment: 32 page
Dissociative recombination measurements of HCl+ using an ion storage ring
We have measured dissociative recombination of HCl+ with electrons using a
merged beams configuration at the heavy-ion storage ring TSR located at the Max
Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the
measured absolute merged beams recombination rate coefficient for collision
energies from 0 to 4.5 eV. We have also developed a new method for deriving the
cross section from the measurements. Our approach does not suffer from
approximations made by previously used methods. The cross section was
transformed to a plasma rate coefficient for the electron temperature range
from T=10 to 5000 K. We show that the previously used HCl+ DR data
underestimate the plasma rate coefficient by a factor of 1.5 at T=10 K and
overestimate it by a factor of 3.0 at T=300 K. We also find that the new data
may partly explain existing discrepancies between observed abundances of
chlorine-bearing molecules and their astrochemical models.Comment: Accepted for publication in ApJ (July 7, 2013
Multi-scale analysis of compressible viscous and rotating fluids
We study a singular limit for the compressible Navier-Stokes system when the
Mach and Rossby numbers are proportional to certain powers of a small parameter
\ep. If the Rossby number dominates the Mach number, the limit problem is
represented by the 2-D incompressible Navier-Stokes system describing the
horizontal motion of vertical averages of the velocity field. If they are of
the same order then the limit problem turns out to be a linear, 2-D equation
with a unique radially symmetric solution. The effect of the centrifugal force
is taken into account
A quantization procedure based on completely positive maps and Markov operators
We describe -limit sets of completely positive (CP) maps over
finite-dimensional spaces. In such sets and in its corresponding convex hulls,
CP maps present isometric behavior and the states contained in it commute with
each other. Motivated by these facts, we describe a quantization procedure
based on CP maps which are induced by Markov (transfer) operators. Classical
dynamics are described by an action over essentially bounded functions. A
non-expansive linear map, which depends on a choice of a probability measure,
is the centerpiece connecting phenomena over function and matrix spaces
Spectroscopy and dissociative recombination of the lowest rotational states of H3+
The dissociative recombination of the lowest rotational states of H3+ has
been investigated at the storage ring TSR using a cryogenic 22-pole
radiofrequency ion trap as injector. The H3+ was cooled with buffer gas at ~15
K to the lowest rotational levels, (J,G)=(1,0) and (1,1), which belong to the
ortho and para proton-spin symmetry, respectively. The rate coefficients and
dissociation dynamics of H3+(J,G) populations produced with normal- and para-H2
were measured and compared to the rate and dynamics of a hot H3+ beam from a
Penning source. The production of cold H3+ rotational populations was
separately studied by rovibrational laser spectroscopy using chemical probing
with argon around 55 K. First results indicate a ~20% relative increase of the
para contribution when using para-H2 as parent gas. The H3+ rate coefficient
observed for the para-H2 source gas, however, is quite similar to the H3+ rate
for the normal-H2 source gas. The recombination dynamics confirm that for both
source gases, only small populations of rotationally excited levels are
present. The distribution of 3-body fragmentation geometries displays a broad
part of various triangular shapes with an enhancement of ~12% for events with
symmetric near-linear configurations. No large dependences on internal state or
collision energy are found.Comment: 10 pages, 9 figures, to be published in Journal of Physics:
Conference Proceeding
Energy-sensitive imaging detector applied to the dissociative recombination of D2H+
We report on an energy-sensitive imaging detector for studying the
fragmentation of polyatomic molecules in the dissociative recombination of fast
molecular ions with electrons. The system is based on a large area (10 cm x 10
cm) position-sensitive, double-sided Si-strip detector with 128 horizontal and
128 vertical strips, whose pulse height information is read out individually.
The setup allows to uniquely identify fragment masses and is thus capable of
measuring branching ratios between different fragmentation channels, kinetic
energy releases, as well as breakup geometries, as a function of the relative
ion-electron energy. The properties of the detection system, which has been
installed at the TSR storage ring facility of the Max-Planck Institute for
Nuclear Physics in Heidelberg, is illustrated by an investigation of the
dissociative recombination of the deuterated triatomic hydrogen cation D2H+. A
huge isotope effect is observed when comparing the relative branching ratio
between the D2+H and the HD+D channel; the ratio 2B(D2+H)/B(HD+D), which is
measured to be 1.27 +/- 0.05 at relative electron-ion energies around 0 eV, is
found to increase to 3.7 +/- 0.5 at ~5 eV.Comment: 11 pages, 12 figures, submitted to Physical Review
Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function ?
We study the commutation relations within the Pauli groups built on all
decompositions of a given Hilbert space dimension , containing a square,
into its factors. Illustrative low dimensional examples are the quartit ()
and two-qubit () systems, the octit (), qubit/quartit () and three-qubit () systems, and so on. In the single qudit case,
e.g. , one defines a bijection between the maximal
commuting sets [with the sum of divisors of ] of Pauli
observables and the maximal submodules of the modular ring ,
that arrange into the projective line and a independent set
of size [with the Dedekind psi function]. In the
multiple qudit case, e.g. , the Pauli graphs rely on
symplectic polar spaces such as the generalized quadrangles GQ(2,2) (if
) and GQ(3,3) (if ). More precisely, in dimension ( a
prime) of the Hilbert space, the observables of the Pauli group (modulo the
center) are seen as the elements of the -dimensional vector space over the
field . In this space, one makes use of the commutator to define
a symplectic polar space of cardinality , that
encodes the maximal commuting sets of the Pauli group by its totally isotropic
subspaces. Building blocks of are punctured polar spaces (i.e. a
observable and all maximum cliques passing to it are removed) of size given by
the Dedekind psi function . For multiple qudit mixtures (e.g.
qubit/quartit, qubit/octit and so on), one finds multiple copies of polar
spaces, ponctured polar spaces, hypercube geometries and other intricate
structures. Such structures play a role in the science of quantum information.Comment: 18 pages, version submiited to J. Phys. A: Math. Theo
Perfect-fluid cylinders and walls - sources for the Levi-Civita space-time
The diagonal metric tensor whose components are functions of one spatial
coordinate is considered. Einstein's field equations for a perfect-fluid source
are reduced to quadratures once a generating function, equal to the product of
two of the metric components, is chosen. The solutions are either static fluid
cylinders or walls depending on whether or not one of the spatial coordinates
is periodic. Cylinder and wall sources are generated and matched to the vacuum
(Levi--Civita) space--time. A match to a cylinder source is achieved for
-\frac{1}{2}<\si<\frac{1}{2}, where \si is the mass per unit length in the
Newtonian limit \si\to 0, and a match to a wall source is possible for
|\si|>\frac{1}{2}, this case being without a Newtonian limit; the positive
(negative) values of \si correspond to a positive (negative) fluid density.
The range of \si for which a source has previously been matched to the
Levi--Civita metric is 0\leq\si<\frac{1}{2} for a cylinder source.Comment: 22 pages, LaTeX, one included figure. Revised version: three
(non-perfect-fluid) interior solutions are added, one of which falsifies the
original conjecture in Sec. 4, and the circular geodesics of the Levi-Civita
space-time are discussed in a footnot
Two-Dimensional Black Holes and Planar General Relativity
The Einstein-Hilbert action with a cosmological term is used to derive a new
action in 1+1 spacetime dimensions. It is shown that the two-dimensional theory
is equivalent to planar symmetry in General Relativity. The two-dimensional
theory admits black holes and free dilatons, and has a structure similar to
two-dimensional string theories. Since by construction these solutions also
solve Einstein's equations, such a theory can bring two-dimensional results
into the four-dimensional real world. In particular the two-dimensional black
hole is also a black hole in General Relativity.Comment: 11 pages, plainte
- …