56 research outputs found
Indoor Mobile Positioning Using Neural Networks and Fuzzy Logic Control
Indoor mobile navigation systems are becoming more prevalent in many areas (transport, public institutions, logistics, etc.). The interior navigation based on the access points, arranged according to the radio fingerprints, is becoming increasingly popular. The model of artificial neural networks (ANN) is often used as a mechanism for storing and processing radio fingerprints. The task of selection of the access point in WLAN network in the case of high user density is quite topical. Such selection must take into account not only the level of the signal received by the mobile device, but also a width in the dedicated channel bandwidth. The main issues related to the creation of program complex for the mobile indoors navigation using neural networks is discussed in the chapter as well as the method of access point selection based on analysis not only the signal level but also the other parameters. To solve this task, fuzzy logic is used
Accuracy and precision of navigated transcranial magnetic stimulation
Objective. Transcranial magnetic stimulation (TMS) induces an electric field (E-field) in the cortex. To facilitate stimulation targeting, image-guided neuronavigation systems have been introduced. Such systems track the placement of the coil with respect to the head and visualize the estimated cortical stimulation location on an anatomical brain image in real time. The accuracy and precision of the neuronavigation is affected by multiple factors. Our aim was to analyze how different factors in TMS neuronavigation affect the accuracy and precision of the coil-head coregistration and the estimated E-field. Approach. By performing simulations, we estimated navigation errors due to distortions in magnetic resonance images (MRIs), head-to-MRI registration (landmark- and surface-based registrations), localization and movement of the head tracker, and localization of the coil tracker. We analyzed the effect of these errors on coil and head coregistration and on the induced E-field as determined with simplistic and realistic head models. Main results. Average total coregistration accuracies were in the range of 2.2-3.6 mm and 1 degrees; precision values were about half of the accuracy values. The coregistration errors were mainly due to head-to-MRI registration with average accuracies 1.5-1.9 mm/0.2-0.4 degrees and precisions 0.5-0.8 mm/0.1-0.2 degrees better with surface-based registration. The other major source of error was the movement of the head tracker with average accuracy of 1.5 mm and precision of 1.1 mm. When assessed within an E-field method, the average accuracies of the peak E-field location, orientation, and magnitude ranged between 1.5 and 5.0 mm, 0.9 and 4.8 degrees, and 4.4 and 8.5% across the E-field models studied. The largest errors were obtained with the landmark-based registration. When computing another accuracy measure with the most realistic E-field model as a reference, the accuracies tended to improve from about 10 mm/15 degrees/25% to about 2 mm/2 degrees/5% when increasing realism of the E-field model. Significance. The results of this comprehensive analysis help TMS operators to recognize the main sources of error in TMS navigation and that the coregistration errors and their effect in the E-field estimation depend on the methods applied. To ensure reliable TMS navigation, we recommend surface-based head-to-MRI registration and realistic models for E-field computations.Peer reviewe
A new model of a tidally disrupted star
A new semi-analytical model of a star evolving in a tidal field is proposed.
The model is a generalization of the so-called 'affine' stellar model. In our
model the star is composed of elliptical shells with different parameters and
different orientations, depending on time and on the radial Lagrangian
coordinate of the shell. The evolution equations of this model are derived from
the virial relations under certain assumptions, and the integrals of motion are
identified. It is shown that the evolution equations can be deduced from a
variational principle. The evolution equations are solved numerically and
compared quantitatively with the results of 3D numerical computations of the
tidal interaction of a star with a supermassive black hole. The comparison
shows very good agreement between the main ``integral'' characteristics
describing the tidal interaction event in our model and in the 3D computations.
Our model is effectively a one-dimensional Lagrangian model from the point of
view of numerical computations, and therefore it can be evolved numerically
times faster than the 3D approach allows. This makes our model
well suited for intensive calculations covering the whole parameter space of
the problem.Comment: This version is accepted for publication in ApJ. Stylistic and
grammatical changes, new Appendix adde
Effect of stimulus orientation and intensity on short-interval intracortical inhibition (SICI) and facilitation (SICF) : A multi-channel transcranial magnetic stimulation study
Publisher Copyright: © 2021 Tugin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Besides stimulus intensities and interstimulus intervals (ISI), the electric field (E-field) orientation is known to affect both short-interval intracortical inhibition (SICI) and facilitation (SICF) in paired-pulse transcranial magnetic stimulation (TMS). However, it has yet to be established how distinct orientations of the conditioning (CS) and test stimuli (TS) affect the SICI and SICF generation. With the use of a multi-channel TMS transducer that provides electronic control of the stimulus orientation and intensity, we aimed to investigate how changes in the CS and TS orientation affect the strength of SICI and SICF. We hypothesized that the CS orientation would play a major role for SICF than for SICI, whereas the CS intensity would be more critical for SICI than for SICF. In eight healthy subjects, we tested two ISIs (1.5 and 2.7 ms), two CS and TS orientations (anteromedial (AM) and posteromedial (PM)), and four CS intensities (50, 70, 90, and 110% of the resting motor threshold (RMT)). The TS intensity was fixed at 110% RMT. The intensities were adjusted to the corresponding RMT in the AM and PM orientations. SICI and SICF were observed in all tested CS and TS orientations. SICI depended on the CS intensity in a U-shaped manner in any combination of the CS and TS orientations. With 70% and 90% RMT CS intensities, stronger PM-oriented CS induced stronger inhibition than weaker AM-oriented CS. Similar SICF was observed for any CS orientation. Neither SICI nor SICF depended on the TS orientation. We demonstrated that SICI and SICF could be elicited by the CS perpendicular to the TS, which indicates that these stimuli affected either overlapping or strongly connected neuronal populations. We concluded that SICI is primarily sensitive to the CS intensity and that CS intensity adjustment resulted in similar SICF for different CS orientations.Peer reviewe
Penning-trap measurement of the -value of the electron capture in for the determination of the electron neutrino mass
The investigation of the absolute scale of the effective neutrino mass
remains challenging due to the exclusively weak interaction of neutrinos with
all known particles in the standard model of particle physics. Currently, the
most precise and least model-dependent upper limit on the electron antineutrino
mass is set by the KATRIN experiment from the analysis of the tritium
\b{eta}-decay. Another promising approach is the electron capture in
, which is under investigation using microcalorimetry within
the ECHo and HOLMES collab orations. An independently measured Q-value of this
process is vital for the assessment of systematic uncertainties in the neutrino
mass determination. Here, we report a direct, independent determination of this
-value by measuring the free-space cyclotron frequency ratio of highly
charged ions of and in the Penning trap
experiment \textsc{Pentatrap}. Combining this ratio with atomic physics
calculations of the electronic binding energies yields a -value of
- a more than 50-fold improvement over the
state-of-the-art. This will enable the determination of the electron neutrino
mass on a sub-eV level from the analysis of the electron capture in
Continuous Symmetries of Difference Equations
Lie group theory was originally created more than 100 years ago as a tool for
solving ordinary and partial differential equations. In this article we review
the results of a much more recent program: the use of Lie groups to study
difference equations. We show that the mismatch between continuous symmetries
and discrete equations can be resolved in at least two manners. One is to use
generalized symmetries acting on solutions of difference equations, but leaving
the lattice invariant. The other is to restrict to point symmetries, but to
allow them to also transform the lattice.Comment: Review articl
Racial differences in systemic sclerosis disease presentation: a European Scleroderma Trials and Research group study
Objectives. Racial factors play a significant role in SSc. We evaluated differences in SSc presentations between white patients (WP), Asian patients (AP) and black patients (BP) and analysed the effects of geographical locations.Methods. SSc characteristics of patients from the EUSTAR cohort were cross-sectionally compared across racial groups using survival and multiple logistic regression analyses.Results. The study included 9162 WP, 341 AP and 181 BP. AP developed the first non-RP feature faster than WP but slower than BP. AP were less frequently anti-centromere (ACA; odds ratio (OR) = 0.4, P < 0.001) and more frequently anti-topoisomerase-I autoantibodies (ATA) positive (OR = 1.2, P = 0.068), while BP were less likely to be ACA and ATA positive than were WP [OR(ACA) = 0.3, P < 0.001; OR(ATA) = 0.5, P = 0.020]. AP had less often (OR = 0.7, P = 0.06) and BP more often (OR = 2.7, P < 0.001) diffuse skin involvement than had WP.AP and BP were more likely to have pulmonary hypertension [OR(AP) = 2.6, P < 0.001; OR(BP) = 2.7, P = 0.03 vs WP] and a reduced forced vital capacity [OR(AP) = 2.5, P < 0.001; OR(BP) = 2.4, P < 0.004] than were WP. AP more often had an impaired diffusing capacity of the lung than had BP and WP [OR(AP vs BP) = 1.9, P = 0.038; OR(AP vs WP) = 2.4, P < 0.001]. After RP onset, AP and BP had a higher hazard to die than had WP [hazard ratio (HR) (AP) = 1.6, P = 0.011; HR(BP) = 2.1, P < 0.001].Conclusion. Compared with WP, and mostly independent of geographical location, AP have a faster and earlier disease onset with high prevalences of ATA, pulmonary hypertension and forced vital capacity impairment and higher mortality. BP had the fastest disease onset, a high prevalence of diffuse skin involvement and nominally the highest mortality
(Table 1) Fluorine in surface waters of the Atlantic Ocean
A rapid potentiometric method for measuring ionic and total fluorine concentrations in sea water with aid of a fluorine-selective electrode is described and corresponding measurements in the 0-2000 m layer of the western Sargasso Sea and in the Gulf Stream are given. Preparation of samples and performance of measurements are described
Formation of structure in hard-alloy coatings from powders under passage of a powerful pulse of electric current
A method of ultrafast deposition of hard-alloy coatings from powders upon passage of a powerful pulse of electric current is considered. The structure of the coatings obtained by the electric-pulse and standard processes is studied by metallographic, electron microscope and x-ray diffraction analyses. The physical, mechanical and cutting properties of the hard-alloy coatings are determined. The endurance of the cutting tools with hard-alloy coatings is estimated under the conditions of large-scale and pilot productions. The possibility of creation of tools with enhanced operating characteristics is demonstrated.The work has been performed within Provision of the Government of the Russian Federation of April 9, 2010 No. 220 “On Measures for Attracting Leading Scientists to Russian Higher Professional Educational Organizations, Scientific Institutions of Academies of Sciences and State Research Centers of the Russian Federation” (Agreement No. 14.B25.31.0012 of June 26, 2013).Peer Reviewe
- …