708 research outputs found

    Pixel lensing: Microlensing towards M31

    Get PDF
    Pixel lensing is gravitational microlensing of unresolved stars. The main target explored up to now has been the nearby galaxy of Andromeda, M31. The scientific issues of interest are the search for dark matter in form of compact halo objects, the study of the characteristics of the luminous lens and source populations and the possibility of detecting extra-solar (and extra-galactic) planets. In the present work we intend to give an updated overview of the observational status in this field.Comment: Invited article for the GRG special issue on gravitational lensing (Ph. Jetzer, Y. Mellier and V. Perlick Eds.

    OGLE-2014-BLG-1186: gravitational microlensing providing evidence for a planet orbiting the foreground star or for a close binary source?

    Get PDF
    Discussing the particularly long gravitational microlensing event OGLE-2014-BLG-1186 with a time-scale t_E ∼ 300 d, we present a methodology for identifying the nature of localised deviations from single-lens point-source light curves, which ensures that (1) the claimed signal is substantially above the noise floor, (2) the inferred properties are robustly determined and their estimation is not subject to confusion with systematic noise in the photometry, (3) alternative viable solutions within the model framework are not missed. Annual parallax and binarity could be separated and robustly measured from the wing and the peak data, respectively. We find matching model light curves that involve either a binary lens or a binary source, and discover hitherto unknown model ambiguities. Our binary-lens models indicate a planet of mass M_2 = (45 ± 9) M⊕, orbiting a star of mass M_1 = (0.35 ± 0.06) M⊙, located at a distance D_L = (1.7 ± 0.3) kpc from Earth, whereas our binary-source models suggest a brown-dwarf lens of M = (0.046 ± 0.007) M⊙, located at a distance D_L = (5.7 ± 0.9) kpc, with the source potentially being a (partially) eclipsing binary involving stars predicted to be of similar colour given the ratios between the luminosities and radii. Further observations might resolve the ambiguity in the interpretation in favour of either a lens or a source binary. We experienced that close binary source stars pose a challenge for claiming the detection of planets by microlensing in events where the source passes very close to the lens star hosting the planet

    The POINT-AGAPE Survey: Comparing Automated Searches of Microlensing Events toward M31

    Full text link
    Searching for microlensing in M31 using automated superpixel surveys raises a number of difficulties which are not present in more conventional techniques. Here we focus on the problem that the list of microlensing candidates is sensitive to the selection criteria or "cuts" imposed and some subjectivity is involved in this. Weakening the cuts will generate a longer list of microlensing candidates but with a greater fraction of spurious ones; strengthening the cuts will produce a shorter list but may exclude some genuine events. We illustrate this by comparing three analyses of the same data-set obtained from a 3-year observing run on the INT in La Palma. The results of two of these analyses have been already reported: Belokurov et al. (2005) obtained between 3 and 22 candidates, depending on the strength of their cuts, while Calchi Novati et al. (2005) obtained 6 candidates. The third analysis is presented here for the first time and reports 10 microlensing candidates, 7 of which are new. Only two of the candidates are common to all three analyses. In order to understand why these analyses produce different candidate lists, a comparison is made of the cuts used by the three groups...Comment: 28 pages, 24 figures, 9 table

    Microlensing towards the Magellanic Clouds and M31: is the quest for MACHOs still open?

    Full text link
    Microlensing is the tool of choice for the search and the analysis of compact halo objects ("MACHOs"), a still viable class of dark matter candidates at the galactic scale. Different analyses point towards an agreement in excluding dark matter MACHOs of less than about 0.1 solar mass; it remains however an ongoing debate for values in the mass range (0.1-1) solar mass. The more robust constraints, though not all in agreement, come from the observational campaigns towards the Magellanic Clouds (the LMC and the SMC). The analyses towards the nearby galaxy of M31, in the so called "pixel lensing" regime, have expanded the perspectives in this field of research. In this contribution first we draw a critical view on recent results and then we focus on the pixel lensing analysis towards M31 of the PLAN collaboration.Comment: 8 pages, no figures; to appear in the Proceedings of the 3rd Italian-Pakistani Workshop on Relativistic Astrophysics, Lecce 20-22 June 2011, published in Journal of Physics: Conference Series (JPCS

    OGLE-2016-BLG-1266: A Probable Brown Dwarf/Planet Binary at the Deuterium Fusion Limit

    Get PDF
    We report the discovery, via the microlensing method, of a new very low mass binary system. By combining measurements from Earth and from the Spitzer telescope in Earth-trailing orbit, we are able to measure the microlensing parallax of the event, and we find that the lens likely consists of a (12.0 ± 0.6)M_J + (15.7 ± 1.5)M_J super-Jupiter/brown dwarf pair. The binary is located at a distance of 3.08 ± 0.18 kpc in the Galactic plane, and the components have a projected separation of 0.43 ± 0.03 au. Two alternative solutions with much lower likelihoods are also discussed, an 8M J and 6M_J model and a 90M_J and 70M_J model. If all photometric measurements were independent and Gaussian distributed with known variances, these alternative solutions would be formally disfavored at the 3σ and 5σ levels. We show how the more massive of these models could be tested with future direct imaging

    OGLE-2017-BLG-0173Lb: Low-mass-ratio Planet in a "Hollywood" Microlensing Event

    Get PDF
    We present microlensing planet OGLE-2017-BLG-0173Lb, with planet–host mass ratio of either q ≃ 2.5 x 10^(-5) or q ≃ 6.5 x 10^(-5), the lowest or among the lowest ever detected. The planetary perturbation is strongly detected, Δχ^2 ~ 10000, because it arises from a bright (therefore, large) source passing over and enveloping the planetary caustic: a so-called "Hollywood" event. The factor ~2.5 offset in q arises because of a previously unrecognized discrete degeneracy between Hollywood events in which the caustic is fully enveloped and those in which only one flank is enveloped, which we dub "Cannae" and "von Schlieffen," respectively. This degeneracy is "accidental" in that it arises from gaps in the data. Nevertheless, the fact that it appears in a Δχ^2 = 10000 planetary anomaly is striking. We present a simple formalism to estimate the sensitivity of other Hollywood events to planets and show that they can lead to detections close to, but perhaps not quite reaching, the Earth/Sun mass ratio of 3 x 10(-6). This formalism also enables an analytic understanding of the factor ~2.5 offset in q between the Cannae and von Schlieffen solutions. The Bayesian estimates for the host mass, system distance, and planet–host projected separation are M = 0.39^(+0.40)_(-0.24) M⊙, D_L = 4.8^(+1.5)_(-1.8) kpc, and a⊥ = 3.8 ± 1.6 au, respectively. The two estimates of the planet mass are m_p = 3.3^(+3.8)_(-2.1) M⊕ and m_p = 8^(+11)_(-6) M⊕. The measured lens-source relative proper motion µ = 6 mas yr^(-1) will permit imaging of the lens in about 15 years or at first light on adaptive-optics imagers on next-generation telescopes. These will allow one to measure the host mass but probably will not be able to resolve the planet–host mass-ratio degeneracy

    Treatment of a double-giant Rhinophyma with electrocautery and Versajet hydrosurgery system

    Get PDF
    Rhinophyma is a disfiguring condition etiologically related to rosacea and due to hypertrophy of the sebaceous glands of the nose. It leads to a progressive thickening of the skin up to the development, in some cases, of severe deformities that result in significant functional deficits and serious cosmetic damage. We report a case of giant rhinophyma consisting of 2 large masses that interfered with feeding and respiration of the patient, and we describe the surgical treatment by resection with electrosurgery and razor-thin saline jet (Versajet Hydrosurgery System). This combined approach is simple and effective for the treatment of severe cases of rhinophyma

    ExELS: an exoplanet legacy science proposal for the ESA Euclid mission. II. Hot exoplanets and sub-stellar systems

    Get PDF
    The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the frequency of cold exoplanets down to Earth mass from host separations of ~1 AU out to the free-floating regime by detecting microlensing events in Galactic Bulge. We show that ExELS can also detect large numbers of hot, transiting exoplanets in the same population. The combined microlensing+transit survey would allow the first self-consistent estimate of the relative frequencies of hot and cold sub-stellar companions, reducing biases in comparing "near-field" radial velocity and transiting exoplanets with "far-field" microlensing exoplanets. The age of the Bulge and its spread in metallicity further allows ExELS to better constrain both the variation of companion frequency with metallicity and statistically explore the strength of star-planet tides. We conservatively estimate that ExELS will detect ~4100 sub-stellar objects, with sensitivity typically reaching down to Neptune-mass planets. Of these, ~600 will be detectable in both Euclid's VIS (optical) channel and NISP H-band imager, with ~90% of detections being hot Jupiters. Likely scenarios predict a range of 2900-7000 for VIS and 400-1600 for H-band. Twice as many can be expected in VIS if the cadence can be increased to match the 20-minute H-band cadence. The separation of planets from brown dwarfs via Doppler boosting or ellipsoidal variability will be possible in a handful of cases. Radial velocity confirmation should be possible in some cases, using 30-metre-class telescopes. We expect secondary eclipses, and reflection and emission from planets to be detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500 planetary-radius companions will be characterised with two-colour photometry and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission from) a large sample of hot Jupiters in the H-band can be explored statistically.Comment: 18 pages, 16 figures, accepted MNRA
    • …
    corecore