10,899 research outputs found

    Radiative Transfer and Radiative driving of Outflows in AGN and Starbursts

    Full text link
    To facilitate the study of black hole fueling, star formation, and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behavior in all of the relevant limits (dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to UV/optical; optically thick to IR) and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ULIRGs with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation. We find that, despite the large opacity of dust to UV radiation, the momentum input to the flow from radiation very rarely exceeds L/c due to two factors: the low opacity of dust to the re-radiated IR and the tendency for dust to be destroyed by sputtering in hot gas environments. We also develop a simplification of our radiative transfer algorithm that respects the essential physics but is much easier to implement and requires a fraction of the computational cost.Comment: 25 pages, 17 figures, submitted to MNRA

    Simulating multiple merger pathways to the central kinematics of early-type galaxies

    Full text link
    Two-dimensional integral field surveys such as ATLAS^3D are producing rich observational data sets yielding insights into galaxy formation. These new kinematic observations have highlighted the need to understand the evolutionary mechanisms leading to a spectrum of fast-rotators and slow-rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamical simulations sampling idealized galaxy merger scenarios constructed from model spiral galaxies. Idealized and controlled simulations of this sort complement the more 'realistic' cosmological simulations by isolating and analyzing the effects of specific parameters, as we do in this paper. We recreate minor and major binary mergers, binary merger trees with multiple progenitors, and multiple sequential mergers. Within each of these categories of formation history, we correlate progenitor gas fraction, mass ratio, orbital pericenter, orbital ellipticity, and spin with remnant kinematic properties. We create kinematic profiles of these 95 simulations comparable to ATLAS^3D data. By constructing remnant profiles of the projected specific angular momentum (lambda_R = / , triaxiality, and measuring the incidences of kinematic twists and kinematically decoupled cores, we distinguish between varying formation scenarios. We find that binary mergers nearly always form fast rotators. Slow rotators can be formed from zero initial angular momentum configurations and gas-poor mergers, but are not as round as the ATLAS^3D galaxies. Remnants of binary merger trees are triaxial slow rotators. Sequential mergers form round slow rotators that most resemble the ATLAS^3D rotators.Comment: MNRAS, in press, 12 pages, 15 figure

    Anisotropy of the Microwave Sky at 90 GHz: Results from Python II

    Get PDF
    We report on additional observations of degree scale anisotropy at 90~GHz from the Amundsen-Scott South Pole Station in Antarctica. Observations during the first season with the Python instrument yielded a statistically significant sky signal; in this paper we report the confirmation of that signal with data taken in the second year, and on results from an interleaving set of fields.Comment: 10 pages, plus 2 figures. Postscript and uufiles versions available via anonymous ftp at ftp://astro.uchicago.edu/pub/astro/ruhl/pyI

    Galaxy size trends as a consequence of cosmology

    Get PDF
    We show that recently documented trends in galaxy sizes with mass and redshift can be understood in terms of the influence of underlying cosmic evolution; a holistic view which is complimentary to interpretations involving the accumulation of discreet evolutionary processes acting on individual objects. Using standard cosmology theory, supported with results from the Millennium simulations, we derive expected size trends for collapsed cosmic structures, emphasising the important distinction between these trends and the assembly paths of individual regions. We then argue that the observed variation in the stellar mass content of these structures can be understood to first order in terms of natural limitations of cooling and feedback. But whilst these relative masses vary by orders of magnitude, galaxy and host radii have been found to correlate linearly. We explain how these two aspects will lead to galaxy sizes that closely follow observed trends and their evolution, comparing directly with the COSMOS and SDSS surveys. Thus we conclude that the observed minimum radius for galaxies, the evolving trend in size as a function of mass for intermediate systems, and the observed increase in the sizes of massive galaxies, may all be considered an emergent consequence of the cosmic expansion.Comment: 14 pages, 13 figures. Accepted by MNRA

    Radius Dependent Luminosity Evolution of Blue Galaxies in GOODS-N

    Get PDF
    We examine the radius-luminosity (R-L) relation for blue galaxies in the Team Keck Redshift Survey (TKRS) of GOODS-N. We compare with a volume-limited, Sloan Digital Sky Survey sample and find that the R-L relation has evolved to lower surface brightness since z=1. Based on the detection limits of GOODS this can not be explained by incompleteness in low surface-brightness galaxies. Number density arguments rule out a pure radius evolution. It can be explained by a radius dependent decline in B-band luminosity with time. Assuming a linear shift in M_B with z, we use a maximum likelihood method to quantify the evolution. Under these assumptions, large (R_{1/2} > 5 kpc), and intermediate sized (3 < R_{1/2} < 5 kpc) galaxies, have experienced Delta M_B =1.53 (-0.10,+0.13) and 1.65 (-0.18, +0.08) magnitudes of dimming since z=1. A simple exponential decline in star formation with an e-folding time of 3 Gyr can result in this amount of dimming. Meanwhile, small galaxies, or some subset thereof, have experienced more evolution, 2.55 (+/- 0.38) magnitudes. This factor of ten decline in luminosity can be explained by sub-samples of starbursting dwarf systems that fade rapidly, coupled with a decline in burst strength or frequency. Samples of bursting, luminous, blue, compact galaxies at intermediate redshifts have been identified by various previous studies. If there has been some growth in galaxy size with time, these measurements are upper limits on luminosity fading.Comment: 34 Total pages, 15 Written pages, 19 pages of Data Table, 13 Figures, accepted for publication in Ap

    Shapes of Stellar Systems and Dark Halos from Simulations of Galaxy Major Mergers

    Full text link
    Using a sample of 89 snapshots from 58 hydrodynamic binary galaxy major merger simulations, we find that stellar remnants are mostly oblate while dark matter halos are mostly prolate or triaxial. The stellar minor axis and the halo major axis are almost always nearly perpendicular. This can be understood by considering the influence of angular momentum and dissipation during the merger. If binary mergers of spiral galaxies are responsible for the formation of elliptical galaxies or some subpopulation thereof, these galaxies can be expected to be oblate and inhabit their halos with the predicted shapes and orientations. These predictions are potentially relevant to observational studies of weak gravitational lensing, where one must stack many optically aligned galaxies in order to determine the shape of the resulting stacked mass distribution. The simple relationship between the dark and luminous matter presented here can be used to guide the stacking of galaxies to minimize the information lost.Comment: 4 pages, 5 figures. Minor changes to match published versio

    First Results from SPARO: Evidence for Large-Scale Toroidal Magnetic Fields in the Galactic Center

    Full text link
    We have observed the linear polarization of 450 micron continuum emission from the Galactic center, using a new polarimetric detector system that is operated on a 2 m telescope at the South Pole. The resulting polarization map extends ~ 170 pc along the Galactic plane and ~ 30 pc in Galactic latitude, and thus covers a significant fraction of the central molecular zone. Our map shows that this region is permeated by large-scale toroidal magnetic fields. We consider our results together with radio observations that show evidence for poloidal fields in the Galactic center, and with Faraday rotation observations. We compare all of these observations with the predictions of a magnetodynamic model for the Galactic center that was proposed in order to explain the Galactic Center Radio Lobe as a magnetically driven gas outflow. We conclude that the observations are basically consistent with the model.Comment: 11 pages, 2 figures, 1 table, submitted to ApJ Let

    Heating of the molecular gas in the massive outflow of the local ultraluminous-infrared and radio-loud galaxy 4C12.50

    Full text link
    We present a comparison of the molecular gas properties in the outflow vs. in the ambient medium of the local prototype radio-loud and ultraluminous-infrared galaxy 4C12.50 (IRAS13451+1232), using new data from the IRAM Plateau de Bure interferometer and 30m telescope, and the Herschel space telescope. Previous H_2 (0-0) S(1) and S(2) observations with the Spitzer space telescope had indicated that the warm (~400K) molecular gas in 4C12.50 is made up of a 1.4(+-0.2)x10^8 M_sun ambient reservoir and a 5.2(+-1.7)x10^7 M_sun outflow. The new CO(1-0) data cube indicates that the corresponding cold (25K) H_2 gas mass is 1.0(+-0.1)x10^10 M_sun for the ambient medium and <1.3x10^8 M_sun for the outflow, when using a CO-intensity-to-H_2-mass conversion factor alpha of 0.8 M_sun /(K km/s pc^2). The combined mass outflow rate is high, 230-800 M_sun/yr, but the amount of gas that could escape the galaxy is low. A potential inflow of gas from a 3.3(+-0.3)x10^8 M_sun tidal tail could moderate any mass loss. The mass ratio of warm-to-cold molecular gas is >= 30 times higher in the outflow than in the ambient medium, indicating that a non-negligible fraction of the accelerated gas is heated to temperatures at which star formation is inefficient. This conclusion is robust against the use of different alpha factor values, and/or different warm gas tracers (H_2 vs. H_2 plus CO): with the CO-probed gas mass being at least 40 times lower at 400K than at 25K, the total warm-to-cold mass ratio is always lower in the ambient gas than in the entrained gas. Heating of the molecular gas could facilitate the detection of new outflows in distant galaxies by enhancing their emission in intermediate rotational number CO lines.Comment: A&A, in pres

    Severe Trichinellosis Cured with Pulse Doses of Glucocorticoids

    Get PDF
    Trichinellosis is a worldwide zoonotic disease caused by a nematode Trichinella spiralis. We studied a case of Trichinella spiralis infection with severe eye involvement, febrile condition, generalised malaise and muscular weakness in a young female patient. Comprehensive ophthalmologic, infectologic, neurological and immunologic examinations including electro diagnostic tests and CT scan of the head were performed, but the diagnosis was confirmed only by histological examination of biopsy specimens of skeletal muscle. The patient did not respond to standard corticosteroid therapy and improved only after pulse doses of 1000 mg methylprednisolon. Although most authors recommend moderately high doses of corticosteroids in the treatment of Trichinellosis, in severe cases extremely high doses might be necessary
    corecore