416 research outputs found

    Analysis of the X-ray Emission of Nine Swift Afterglows

    Full text link
    The X-ray light-curves of 9 Swift XRT afterglows (050126, 050128, 050219A, 050315, 050318, 050319, 050401, 050408, 050505) display a complex behaviour: a steep t^{-3.0 \pm 0.3} decay until ~400 s, followed by a significantly slower t^{-0.65+/-0.20} fall-off, which at 0.2--2 d after the burst evolves into a t^{-1.7+/-0.5} decay. We consider three possible models for the geometry of relativistic blast-waves (spherical outflows, non-spreading jets, and spreading jets), two possible dynamical regimes for the forward shock (adiabatic and fully radiative), and we take into account a possible angular structure of the outflow and delayed energy injection in the blast-wave, to identify the models which reconcile the X-ray light-curve decay with the slope of the X-ray continuum for each of the above three afterglow phases. By piecing together the various models for each phase in a way that makes physical sense, we identify possible models for the entire X-ray afterglow. The major conclusion of this work is that a long-lived episode of energy injection in the blast-wave, during which the shock energy increases at t^{1.0+/-0.5}, is required for five afterglows and could be at work in the other four as well. Optical observations in conjunction with the X-ray can distinguish among these various models. Our simple tests allow the determination of the location of the cooling frequency relative to the X-ray domain and, thus, of the index of the electron power-law distribution with energy in the blast-wave. The resulting indices are clearly inconsistent with an universal value.Comment: 10 pages, minor changes, to be published in the MNRA

    Mitigating Charge Transfer Inefficiency in the Chandra X-ray Observatory's ACIS Instrument

    Get PDF
    The ACIS front-illuminated CCDs onboard the Chandra X-ray Observatory were damaged in the extreme environment of the Earth's radiation belts, resulting in enhanced charge transfer inefficiency (CTI). This produces a row dependence in gain, event grade, and energy resolution. We model the CTI as a function of input photon energy, including the effects of de-trapping (charge trailing), shielding within an event (charge in the leading pixels of the 3X3 event island protect the rest of the island by filling traps), and non-uniform spatial distribution of traps. This technique cannot fully recover the degraded energy resolution, but it reduces the position dependence of gain and grade distributions. By correcting the grade distributions as well as the event amplitudes, we can improve the instrument's quantum efficiency. We outline our model for CTI correction and discuss how the corrector can improve astrophysical results derived from ACIS data.Comment: Accepted by ApJ Letters; see http://www.astro.psu.edu/users/townsley/cti

    Performance of single photon-counting X-ray charge coupled devices

    Get PDF
    Results of intial performance tests on X-ray sensing properties of charge-coupled devices (CCDs) are presented. CCDs have demonstrated excellent spatial resolution and good spectral resolution, superior to that of non-imaging proportional counters

    Large-Scale Outflows in Edge-on Seyfert Galaxies. III. Kiloparsec-Scale Soft X-ray Emission

    Get PDF
    We present ROSAT PSPC and HRI images of eight galaxies selected from a distance-limited sample of 22 edge-on Seyfert galaxies. Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in three galaxies (NGC 2992, NGC 4388 and NGC 5506). The extended X-ray emission has 0.2-2.4 keV X-ray luminosities of 0.4−3.5×1040ergs−10.4-3.5 \times 10^{40} erg s^{-1}. The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is \gapprox 10^4 times larger than the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations in cases where the winds are oriented along the rotation axis of the galaxy disk.Comment: 24 pages, 7 ps figures, AASTEX 4.0, accepted for ApJ April 1, 199

    Joint Astrophysics Nascent Universe Satellite:. utilizing GRBs as high redshift probes

    Get PDF
    The Joint Astrophysics Nascent Universe Satellite (JANUS) is a multiwavelength cosmology mission designed to address fundamental questions about the cosmic dawn. It has three primary science objectives: (1) measure the massive star formation rate over 5 ≤ z ≤ 12 by discovering and observing high-z gamma-ray bursts (GRBs) and their afterglows, (2) enable detailed studies of the history of reionization and metal enrichment in the early Universe, and (3) map the growth of the first supermassive black holes by discovering and observing the brightest quasars at z ≥ 6. A rapidly slewing spacecraft and three science instruments – the X-ray Coded Aperture Telescope (XCAT), the Near InfraRed Telescope (NIRT), and the GAmma-ray Transient Experiment for Students (GATES) – make-up the JANUS observatory and are responsible for realizing the three primary science objectives. The XCAT (0.5–20 keV) is a wide field of view instrument responsible for detecting and localizing ∼60 z ≥ 5 GRBs, including ∼8 z ≥ 8 GRBs, during a 2-year mission. The NIRT (0.7–1.7 µm) refines the GRB positions and provides rapid (≤ 30 min) redshift information to the astronomical community. Concurrently, the NIRT performs a 20, 000 deg2 survey of the extragalactic sky discovering and localizing ∼300 z ≥ 6 quasars, including ∼50 at z ≥ 7, over a two-year period. The GATES provides high-energy (15 keV −1.0 MeV) spectroscopy as well as 60–500 keV polarimetry of bright GRBs. Here we outline the JANUS instrumentation and the mission science motivations

    Are orchid bees useful indicators of the impacts of human disturbance?

    Get PDF
    Biodiversity and ecosystem functions are threatened by human disturbance, and tropical forests are one the most vulnerable habitats. Monitoring the impacts of disturbance and the success of conservation projects is crucial, and to do this effectively it is important to identify suitable measures that are sensitive to ecosystem disturbance. Orchid bees (Euglossini) are a specialist group with mutualistic relationships with many plant species and can fly long distances, making them important pollinators of widely dispersed plant species. A loss of specialist pollinators such as these could have severe consequences for the plants that rely on their services. We therefore aimed to answer the following question: are orchid bees useful indicators of the impacts of human disturbance? If so, what measures of orchid bee diversity are most sensitive? And do orchid bees provide any indication of changes in pollination services along a disturbance gradient? Orchid bees were collected from 18 sites across a gradient of disturbance in a tropical forest region in southeast Peru. Alpha diversity across the gradient was compared using Hills numbers. Beta diversity was assessed using community composition, species contributions to beta diversity, beta diversity partitioning and novel measures of redundancy and representativeness. The potential pollination services available at each site were measured using artificial flowers and counts of pollinator visits. Alpha diversity of orchid bees showed low sensitivity to disturbance. Beta diversity measures were more informative, with disturbed sites found to be highly redundant in the ecosystem compared to the less disturbed sites. However, the most sensitive measure across the gradient was abundance – there was a significant decrease in the number of bees caught as disturbance increased, with likely consequences for pollination services. These results suggest that orchid bees may be useful indicators of the impacts of human disturbance, but alpha diversity is a poor metric for this purpose. In order to understand how human disturbance is affecting biodiversity, multiple diversity indices should be considered, and in the case of orchid bees, redundancy and abundance could be useful for detecting sensitive responses to forest disturbance. © 2019 Elsevier Lt

    A 9 month long soft X-ray survey of the large magellanic cloud. I. X-ray map at ¼ keV

    Get PDF
    We present a ¼ keV X-ray map of the Large Magellanic Cloud (LMC) obtained from 9 months of scanning observations with the HEAO 1 low energy detectors. This soft X-ray map is the most sensitive ¼ keV survey of this region yet reported. A detailed comparison of the ¼ keV X-ray observations with the neutral hydrogen column densities in the LMC obtained from a new 21 cm line survey shows no evidence for absorption effects is found, which in the ¼ keV X-ray flux from the LMC due to the neutral matter in the LMC. Instead, faint X-ray emission invalidates attempts to use the LMC to measure any hypothetical cosmic ¼ keV X-ray background, at least for instruments which are unable to spatially resolve the LMC emission. The extent of the observed emission is smaller than the size of the halo (24°) or the disk (14°) of the LMC. Assuming this ¼ keV emission to be diffuse, we identify it with two large regions in the LMC- a supergiant shell of optical nebulosity known as Shapely III and the bar of the LMC. The X-ray luminosities of these two regions are estimated to be 3.4×1037 ergs s−1 and 7.2×1037 ergs s−1 (0.1-1.0 keV), respectively. Shapely III could be the first X-ray superbubble observed in an external galaxy

    0103-72.6: A New Oxygen-Rich Supernova Remnant in the Small Magellanic Cloud

    Full text link
    0103−-72.6, the second brightest X-ray supernova remnant (SNR) in the Small Magellanic Cloud (SMC), has been observed with the {\it Chandra X-Ray Observatory}. Our {\it Chandra} observation unambiguously resolves the X-ray emission into a nearly complete, remarkably circular shell surrounding bright clumpy emission in the center of the remnant. The observed X-ray spectrum for the central region is evidently dominated by emission from reverse shock-heated metal-rich ejecta. Elemental abundances in this ejecta material are particularly enhanced in oxygen and neon, while less prominent in the heavier elements Si, S, and Fe. We thus propose that 0103−-72.6 is a new ``oxygen-rich'' SNR, making it only the second member of the class in the SMC. The outer shell is the limb-brightened, soft X-ray emission from the swept-up SMC interstellar medium. The presence of O-rich ejecta and the SNR's location within an H{\small II} region attest to a massive star core-collapse origin for 0103−-72.6. The elemental abundance ratios derived from the ejecta suggest an ∼\sim18 M⊙_{\odot} progenitor star.Comment: 6 pages (ApJ emulator format), including 5 figures and 2 tables. For high quality Figs.1,2, & 3, contact [email protected]. Accepted by the ApJ Letter

    The Radial Structure of SNR N103B

    Get PDF
    We report on the results from a Chandra ACIS observation of the young, compact, supernova remnant N103B. The unprecedented spatial resolution of Chandra reveals sub-arcsecond structure, both in the brightness and in spectral variations. Underlying these small-scale variations is a surprisingly simple radial structure in the equivalent widths of the strong Si and S emission lines. We investigate these radial variations through spatially resolved spectroscopy using a plane-parallel, non-equilibrium ionization model with multiple components. The majority of the emission arises from components with a temperature of 1 keV: a fully ionized hydrogen component; a high ionization timescale (n_e*t > 10^12 s cm^-3) component containing Si, S, Ar, Ca, and Fe; and a low ionization timescale (n_e*t ~ 10^{11} s cm^-3) O, Ne, and Mg component. To reproduce the strong Fe Kalpha line, it is necessary to include additional Fe in a hot (> 2 keV), low ionization (n_e*t ~ 10^10.8 s cm^-3) component. This hot Fe may be in the form of hot Fe bubbles, formed in the radioactive decay of clumps of 56Ni. We find no radial variation in the ionization timescales or temperatures of the various components. Rather, the Si and S equivalent widths increase at large radii because these lines, as well as those of Ar and Ca, are formed in a shell occupying the outer half of the remnant. A shell of hot Fe is located interior to this, but there is a large region of overlap between these two shells. In the inner 30% of the remnant, there is a core of cooler, 1 keV Fe. We find that the distribution of the ejecta and the yields of the intermediate mass species are consistent with model prediction for Type Ia events.Comment: 34 pages, including 7 tables and 7 figures, Accepted by Ap
    • …
    corecore