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Abstract. The Joint Astrophysics Nascent Universe Satellite (JANUS) is a multi-
wavelength cosmology mission designed to address fundamental questions about the cos-
mic dawn. It has three primary science objectives: (1) measure the massive star formation
rate over 5 ≤ z ≤ 12 by discovering and observing high-z gamma-ray bursts (GRBs) and
their afterglows, (2) enable detailed studies of the history of reionization and metal enrich-
ment in the early Universe, and (3) map the growth of the first supermassive black holes
by discovering and observing the brightest quasars at z ≥ 6. A rapidly slewing space-
craft and three science instruments – the X-ray Coded Aperture Telescope (XCAT), the
Near InfraRed Telescope (NIRT), and the GAmma-ray Transient Experiment for Students
(GATES) – make-up the JANUS observatory and are responsible for realizing the three
primary science objectives. The XCAT (0.5–20 keV) is a wide field of view instrument
responsible for detecting and localizing ∼60 z ≥ 5 GRBs, including ∼8 z ≥ 8 GRBs,
during a 2-year mission. The NIRT (0.7–1.7 µm) refines the GRB positions and provides
rapid (≤ 30 min) redshift information to the astronomical community. Concurrently, the
NIRT performs a 20, 000 deg2 survey of the extragalactic sky discovering and localizing
∼300 z ≥ 6 quasars, including ∼50 at z ≥ 7, over a two-year period. The GATES provides
high-energy (15 keV− 1.0 MeV) spectroscopy as well as 60–500 keV polarimetry of bright
GRBs. Here we outline the JANUS instrumentation and the mission science motivations.

Key words. Space vehicles – Space vehicles: instruments – Gamma-ray burst: general –
early Universe – dark ages, reionization, first stars

1. Introduction

Arguably, the final frontier of observational
astrophysics is the period known as the cos-

Send offprint requests to: P. Roming

mic dawn (7 ∼< z ∼< 13). It is this period in
our history that was highlighted in the 2010
Astrophysics Decadal Survey (NRC 2010) as
one of the top priorities for study. During this
period the Universe began the transition from a
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composition of mostly neutral hydrogen (H I)
to ionized hydrogen (H II). It is believed that
the dominant source of this reionization was
the first gravitationally bound objects, primar-
ily early massive stars (Barkana 2006). There
are many questions related to these early stars:
how and when did they form; what environ-
ment did they live in; how did they contribute
to future generation of stars; what was the star
formation rate (SFR) at this early epoch; and
how did it evolve over time?

Our current understanding of the answers
to these questions primarily comes by means of
numerical simulations. These simulations paint
a picture as described below, although the pre-
sentation here is somewhat abbreviated.

Around 200 million years after the Big
Bang (Bromm et al. 2009), baryonic matter,
primarily consisting of atomic H and He, be-
gan falling into small (105–106 M�) dark mat-
ter dominated haloes (Abel et al. 2007; Gao
& Theuns 2007). As these clouds of baryonic
matter began collapsing, they warmed to tem-
peratures > 1000 K. In these dense hot clouds,
some of the H-atoms paired and created molec-
ular hydrogen (H2), which acted as a cool-
ing agent. As the gas cooled to ∼200 K it
also caused further contraction of the gas cloud
eventually collapsing to the point where the
first stars turned on (Abel et al. 2000). These
firsts stars were very massive (60–300 M�;
Bromm et al. 2002, 2009), with large luminosi-
ties (∼2–10×106 L�) and radii (∼5–10 R�),
metal free (Loeb 2010), and possibly very high
spin rates (Chiappini et al. 2011). This combi-
nation of large mass, high spin rates, and low
metallicity points to a these early stars possibly
ending their lives as gamma-ray bursts (GRBs;
Woosley & Heger 2006). The death of these
massive stars could have produced the heavier
elements that were later recycled in the next
generation of stars (Heger & Woosley 2002).

As tantalizing as these numerical results
are, very little observational evidence has been
obtained, thus making it difficult to verify the
numerical findings. A current census of spec-
troscopically confirmed z > 6 objects con-
sists of: three GRBs, including GRB 090423
at z = 8.2 (Tanvir et al. 2009); ∼35 quasars,
which includes ULAS J1120+0641 at z =

7.085 (Mortlock et al. 2011); and ∼30 galax-
ies plus the most distant galaxy in the sam-
ple, UDFy-38135539 at z = 8.5549 (Lehnert
et al. 2010). In addition, a photometric redshift
was determined for GRB 090429B (Cucchiara
et al. 2011) and UDFy-39546284 (Bouwens et
al. 2011) at z∼9.4 and z∼10, respectively.

Despite the paucity of these samples,
GRBs, quasars, and galaxies have been used
to infer the nature of the early Universe (e.g.,
measure the SFR; Wanderman & Piran 2010;
Wang et al. 2011; Bouwens et al. 2009), with
great disparity between the different models
(e.g., Yüksel et al. 2008). As cosmologi-
cal probes, each of these object types have
pros and cons (see Table 1). As illustrated
in Table 1, if GRBs can be captured when
they are bright, they have a distinct advan-
tage over quasars and galaxies as cosmologi-
cal probes. In addition, their host galaxies are
not biased with respect to the host’s luminosity.
Current high-z galaxy surveys only detect the
bright end of the luminosity function; there-
fore, they underestimate the SFR – even the
James Webb Space Telescope will not be able
to detect faint high-z galaxies (Barkana & Loeb
2000). Because of the physical and observa-
tional challenges associated with using quasars
and galaxies as high-z probes, GRBs may be
the only way to perform a statistically signifi-
cant z > 8 survey in the foreseeable future.

However, current capabilities for observing
these high-z beacons is limited. The need exists
to probe further back in redshift space and to
gather an ∼10× larger sample.

2. Why Not Swift?

The Swift Gamma-Ray Burst Mission (Gehrels
et al. 2004) has transformed the field of GRBs.
Included in its many revolutionary discoveries
are: flaring in light curves due to energy in-
jection from the central engine (e.g., Burrows
et al. 2005), observations of short GRB after-
glows (e.g., Gehrels et al. 2005; Roming et
al. 2006) that challenged previous held beliefs
on their origins (cf. Fox & Roming 2007), a
connection between the prompt central engine
and activity in early x-ray afterglows (O’Brien
et al. 2006), “canonical” x-ray afterglows (e.g.,
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Table 1. Characteristics of High-z Probes

Characteristics GRBs quasars galaxies

Persistent/Fading Source (P/F) F P P
Luminosity (logL�) ∼19 ∼13 ∼10
Non-thermal/Thermal Spectrum (N/T) N T T
Increasing/Decreasing in Frequency (I/D) I* D D
*cf. Yüksel et al. (2008); Qin et al. (2010)

Nousek et al. 2006), two component jets (e.g.,
Oates et al. 2007; Racusin et al. 2008), ob-
servation of a nearby damped Ly-α absorber
(DLA) in a GRB afterglow (Kuin et al. 2009),
and a determination that at least some short
GRBs are the result of a compact merger (e.g.,
Berger 2009).

Notwithstanding these successes, Swift has
struggled in meeting one of its primary science
objectives: to “use GRBs to study the early uni-
verse out to z > 10” (Gehrels et al. 2004). In
its almost seven years of operations, Swift has
only discovered three GRBs with verified red-
shifts of z > 6 (e.g., Kawai et al. 2006; Greiner
et al. 2009; Tanvir et al. 2009). Why is this?
The answer lies in the fact that Swift was not
optimized for high-z observations. This limi-
tation comes from three primary mission con-
figurations: (1) the Swift Burst Alert Telescope
(BAT; Barthelmy et al. 2005) is not optimized
in the correct energy range, (2) the Swift Ultra-
Violet/Optical Telescope’s (UVOT; Roming et
al. 2005) response is not red enough, and (3)
there is no on-board redshift capability.

The BAT is optimized for detecting ∼40–
80 keV bursts, which equates to ∼1.75 < z <
4.5. Indeed, the average redshift of Swift bursts
is 〈z〉 = 2.19 (Jakobsson et al. 2006)1. Recent
work reveals that the optimal energy band for
detecting high-z bursts is ∼< 30 keV (Burrows
et al. 2011).

The UVOT’s reddest response is ∼8000 Å,
which equates to the detecting of the Ly-α edge
in the GRB afterglow out to a z ∼ 5.1. An ex-
amination of the second UVOT afterglow cat-

1 This value continues to be updated at
http://www.raunvis.hi.is/ pja/GRBsample.html

Table 2. Confirmed Spectroscopic z > 6 GRBs

GRB tPhoto−z tSpectra−z z
(hrs) (hrs)

050904 10 84 6.3
080913 10 11 6.7
090423 7 24 8.2

alog reveals that of the ∼200 GRBs with af-
terglows, the highest redshift is GRB 100219A
at z = 4.67 (Roming et al. 2011). In order to
probe to z ≈ 10, the instrument response needs
to be pushed out to > 1.4 µm.

Swift provides arcsecond and sub-
arcsecond positional information but does
not have the capability for providing burst
redshifts. These redshifts are provided by the
ground-based community, which has proven
to be cumbersome and inadequate method.
Based on limited past experience with high-z
bursts (see Table 2), it typically takes ∼10 hrs
to obtain a photometric redshift, followed by
an additional ∼14 hrs to measure the redshift
spectroscopically. By this time, the afterglow
has usually faded below levels that are useful
for doing science. In order to study a large
sample of GRBs during the cosmic dawn,
ground-based telescopes need to have redshift
information in ∼30 min.

3. Joint Astrophysics Nascent
Universe Satellite

A proposed solution to addressing these lim-
itations is the Joint Astrophysics Nascent
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Universe Satellite. The mission is designed
around observations of high-z objects with
three primary science objectives, three science
instruments, and two observing modes, as de-
scribed below.

3.1. JANUS Science Objectives

The three primary JANUS science objectives
are: (1) measure the massive star formation rate
(SFR) over 5 ≤ z ≤ 12 by discovering and
observing high-z GRBs and their afterglows;
(2) enable detailed studies of the history of
reionization and metal enrichment in the early
Universe; and (3) map the growth of the first
supermassive black holes by discovering and
observing the brightest quasars at z ≥ 6.

JANUS simulations indicate that ∼60
bursts at z ≥ 5 (∼8 at z ≥ 8) over a two-
year mission will be identified, with burst po-
sitions, fluxes, and redshifts transmitted to the
astronomical community for most bursts in
< 30 min (initial positions and fluxes will be
transmitted much earlier, while the redshift is
being obtained). These notifications will facil-
itate rapid ground-based observations of the
afterglows while they are still bright, thus al-
lowing a measure of the ionized fraction in
the interstellar medium and the metal content
in the circumburst environment. Concurrently,
JANUS will localize ∼300 quasars at z ≥ 6
(∼50 at z ≥ 7) thus providing a large statisti-
cal sample for studying these early massively
collapsed objects.

3.2. JANUS Instruments

The JANUS observatory is composed of four
major components: the spacecraft, the X-ray
Coded Aperture Telescope (XCAT; Falcone et
al. 2010), the Near InfraRed Telescope (NIRT),
and the GAmma-ray Transient Experiment for
Students (GATES). The placement of the in-
struments onto the spacecraft is shown in
Fig. 1. The spacecraft provides a stable plat-
form from which the instruments can observe,
rapid slews to GRBs (50 deg in 100 s), and
rapid communication with the ground.

XCAT 

NIRT 

GATES 

Fig. 1. The JANUS Observatory with the location
of each instrument identified.

The primary function of the XCAT is to de-
tect high-z (z > 6) GRBs and to provide ∼sub-
arcmin localizations. The XCAT (Fig. 2) is a
coded aperture telescope that is sensitive in the
0.5–25 keV range. The telescope consists of
ten modules that are arranged in a 2 × 5 cater-
pillar format that provides a field-of-view of
∼4 sr. Since high-z GRBs are rare, breadth is
more important than depth; therefore, a large
field-of-view is critical. Bursts are localized to
40–70 arcsec using a triggering algorithm sim-
ilar to that used on the Swift BAT. These in-
strument parameters have been optimized for
finding high-z GRBs (Burrows et al. 2011).

The primary function of the NIRT is to pro-
vide sub-arcsecond localizations and redshifts
of z > 6 GRBs and quasars. The NIRT (Fig. 3)
is of a Ritchey-Chrétian design with a 55-cm
aperture. The detector is sensitive in the 0.7–
1.7 µm range and has a 0.36 deg2 field-of-view,
thus enabling a survey of the entire extragalac-
tic sky for quasars in two years while pro-
viding ample spatial coverage of the XCAT’s
GRB positional uncertainty. NIRT burst posi-
tions are localized to sub-arcsecond accuracy.
The NIRT performs direct imaging and low-
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Hybrid CMOS detectors (Si) 

10 modules arranged in 2x5 
Fig. 2. The JANUS X-ray Coded Aperture
Telescope (XCAT).

resolution (R ∼ 16 at 1.2 µm) spectroscopy via
the means of an objective prism. Burst position
and redshift information is sent to the ground
in < 30 min. Since NIRT observations are
done above the Earth’s atmosphere, the near-IR
background is orders of magnitude lower and
telluric lines are eliminated, thus NIRT magni-
tude limits are considerably lower as compared
to comparable aperture instruments.

The GATES (Fig. 4) instrument is a student
project based on the Gamma-RAy Polarimeter
Experiment (GRAPE; McConnell et al. 2009).
The GATES detector is an array of individual
plastic and CsI scintillator elements, each in-
dependently read out by a Si photomultiplier.
The array operates in the 15 keV − 1.0 MeV
band in a photon-counting and spectroscopic
mode, thus capturing the peak energies (Ep) of
bright GRBs. It also measures the polarization
in the 60–500 keV range of bright GRBs. The
field-of-view is ±60 deg.

3.3. JANUS Observing Modes

JANUS has two primary observing modes: sur-
vey and burst. In the survey mode, the NIRT
performs an objective prism survey of the
extragalactic sky (20, 000 deg2) to a limiting
magnitude of J = 20 (4σ) in search of z > 6
quasars. A deeper survey of 200 deg2 will pro-
vide a limiting magnitude of J = 21.9 (4σ).

While the NIRT is performing this survey,
the XCAT is scanning the sky for GRBs. When
a GRB is localized, the NIRT survey is inter-
rupted and the spacecraft slews the NIRT bore-
site to the position of the GRB. The NIRT takes
simultaneous images and spectra of the after-

Fig. 3. The JANUS Near InfraRed Telescope
(NIRT).

glow which are then telemetered to the ground.
The GATES provides Ep and polarimetry in-
formation on the brighter bursts. Burst posi-
tion, flux, light curves (LCs), and spectra are
rapidly transmitted (see Table 3) to the GRB
Coordinate Network (Barthelmy et al. 1995,
1998).
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Fig. 4. The JANUS GAmma-ray Transient
Experiment for Students (GATES).

Table 3. GRB Observation Timeline

Event Time Since
Trigger (s)

GRB Trigger 0
X-ray position to GCN 15
X-ray flux to GCN 15
Init. X-ray LC to GCN 100
γ-ray spectra to GCN 120
X-ray LCs to GCN (×10) 120–280
NIRT position to GCN 1140
NIRT flux to GCN 1140
NIRT spectra to GCN 1140
Redshift to GCN 1200

4. Conclusions

If the capability for acquiring a target and dis-
seminating a redshift is available, GRBs are
one of the best ways for observing the early
(6 ∼< z ∼< 13) Universe. The JANUS is opti-
mized for detecting and observing these high-z
GRBs and their afterglows, as well as for un-
covering high-z quasars.

Based on mission simulations, it is antic-
ipated that JANUS will directly provide the
following results: measure the massive-SFR
in the infant Universe, determine the role of
high mass stars on reionization, and map the
growth of super-massive black holes in z >
6 quasars. Because of its softer energy re-

sponse, the XCAT will also discover and lo-
calize low-z, low-luminosity GRBs that are as-
sociated with supernovae. JANUS will also fa-
cilitate other ground- and space-based science
endeavors, co-jointly delivering such potential
results as: localizations of faint high-z galax-
ies, a realization of the amount of metal enrich-
ment in early Universe star-forming regions,
and a determination if PopIII stars explode as
GRB/pair-instability supernovae.
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