11 research outputs found

    Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment

    Get PDF
    We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment

    The LSST-DESC 3x2pt Tomography Optimization Challenge

    Get PDF
    International audienceThis paper presents the results of the Rubin Observatory Dark Energy Science Collaboration (DESC) 3x2pt tomography challenge, which served as a first step toward optimizing the tomographic binning strategy for the main DESC analysis. The task of choosing an optimal tomographic binning scheme for a photometric survey is made particularly delicate in the context of a metacalibrated lensing catalogue, as only the photometry from the bands included in the metacalibration process (usually riz and potentially g) can be used in sample definition. The goal of the challenge was to collect and compare bin assignment strategies under various metrics of a standard 3x2pt cosmology analysis in a highly idealized setting to establish a baseline for realistically complex follow-up studies; in this preliminary study, we used two sets of cosmological simulations of galaxy redshifts and photometry under a simple noise model neglecting photometric outliers and variation in observing conditions, and contributed algorithms were provided with a representative and complete training set. We review and evaluate the entries to the challenge, finding that even from this limited photometry information, multiple algorithms can separate tomographic bins reasonably well, reaching figures-of-merit scores close to the attainable maximum. We further find that adding the g band to riz photometry improves metric performance by ~15% and that the optimal bin assignment strategy depends strongly on the science case: which figure-of-merit is to be optimized, and which observables (clustering, lensing, or both) are included

    A pulsed high-voltage decelerator system to deliver low-energy antiprotons

    No full text
    The GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment at CERN requires efficient deceleration of 100 keV antiprotons provided by the new ELENA synchrotron ring to synthesize antihydrogen. This is accomplished using electrostatic deceleration optics and a drift tube that is designed to switch from -99 kV to ground when the antiproton bunch is inside - essentially a charged-particle “elevator” - producing a 1 keV pulse. We describe the simulation, design, construction and successful testing of the decelerator device at -92 kV on-line with ELENA

    Positron production using a 9 MeV electron linac for the GBAR experiment

    Get PDF
    International audienceFor the GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment at CERN’s Antiproton Decelerator (AD) facility we have constructed a source of slow positrons, which uses a low-energy electron linear accelerator (linac). The driver linac produces electrons of 9 MeV kinetic energy that create positrons from bremsstrahlung-induced pair production. Staying below 10 MeV ensures no persistent radioactive activation in the target zone and that the radiation level outside the biological shield is safe for public access. An annealed tungsten-mesh assembly placed directly behind the target acts as a positron moderator. The system produces 5×107 slow positrons per second, a performance demonstrating that a low-energy electron linac is a superior choice over positron-emitting radioactive sources for high positron flux
    corecore