4 research outputs found
Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis
The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone
Clone-based functional genomics
Annotated genomes have provided a wealth of information about gene structure and gene catalogs in a wide range of species. Taking advantage of these developments, novel techniques have been implemented to investigate systematically diverse aspects of gene and protein functions underpinning biology processes. Here, we review functional genomics applications that require the mass production of cloned sequence repertoires, including ORFeomes and silencing tag collections. We discuss the techniques employed in large-scale cloning projects and we provide an up-to-date overview of the clone resources available for model plant species and of the current applications that may be scaled up for systematic plant gene studies