25 research outputs found

    Forcing alpha-cell-mediated beta-cell regeneration

    No full text
    Le diabète de type 1 (DT1) résulte de la destruction des cellules β productrices d’insuline par le système immunitaire. Cette condition représente un enjeu de santé publique majeur car, malgré les thérapies actuelles, les patients atteints développent trop souvent des complications cardio-vasculaires. Des thérapies alternatives se doivent donc d’être mises au point. Ainsi, diverses approches visent à reprogrammer/différencier (in vitro ou in vivo) différents types cellulaires pancréatiques afin de générer des cellules β (productrices d’insuline) fonctionnelles. Dans ce but, notre laboratoire a notamment montré que les cellules α (productrices de glucagon) embryonnaires peuvent être régénérées et converties en cellules β fonctionnelles par l’expression ectopique du seul gène Pax4 (un gène normalement impliqué dans la spécification embryonnaire du lignage β - (Collombat and Mansouri, 2009)). Dans la première partie de ce travail, nous démontrons que les cellules α à l’âge adulte (Al-Hasani et al., 2013) retiennent leur capacité de régénération et de conversion en cellules β, celles-ci étant fonctionnelles et capable de remplacer plusieurs fois l’ensemble des cellules β du pancréas. Cependant, cette approche transgénique serait difficile à mettre en œuvre chez l’homme. De nombreux cribles furent donc initiées dans le but de trouver des petites molécules/composés chimiques mimant les effets de Pax4. Un composé potentiel, GABA, fut ainsi identifié et caractérisé.Type 1 diabetes (T1D) results from the destruction of insulin-producing β-cells by the immune system. This condition is a major public health issue because, despite current therapies, patients often develop cardiovascular complications. Therefore alternative therapies need to be developed. Thus, various approaches are designed to reprogram / differentiate (in vitro or in vivo) different pancreatic cell types to generate functional (insulin-producing) β-cells. To this end, our laboratory has shown that especially the embryonic α-cells (producing glucagon) can be regenerated and converted into functional β-cells by the ectopic expression of the Pax4 gene (usually a gene involved in the specification of embryonic lineage β - (Collombat and Mansouri, 2009)). In the first part of this work, we show that α-cells in adulthood (Al-Hasani et al., 2013) retain their capacity for regeneration and conversion into β-cells, the latter being functional and able to replace repeatedly all the β-cells of the pancreas. However, this transgenic approach would be difficult to implement in humans. Many screens were therefore initiated in order to find small molecules / chemical compounds that mimic the effects of Pax4. A potential compound, GABA, was identified and characterized. Our results demonstrate that treatment of WT mice with GABA results in a significant increase in the number and size of the islets (caused by insulin+ cell hyperplasia). By using lineage tracing tools, our results indicate that these "β-like" neo-generated cells are coming from glucagon+ cells

    Forcer la régénération des cellules bêta à l’aide des cellules alpha

    Get PDF
    Type 1 diabetes (T1D) results from the destruction of insulin-producing β-cells by the immune system. This condition is a major public health issue because, despite current therapies, patients often develop cardiovascular complications. Therefore alternative therapies need to be developed. Thus, various approaches are designed to reprogram / differentiate (in vitro or in vivo) different pancreatic cell types to generate functional (insulin-producing) β-cells. To this end, our laboratory has shown that especially the embryonic α-cells (producing glucagon) can be regenerated and converted into functional β-cells by the ectopic expression of the Pax4 gene (usually a gene involved in the specification of embryonic lineage β - (Collombat and Mansouri, 2009)). In the first part of this work, we show that α-cells in adulthood (Al-Hasani et al., 2013) retain their capacity for regeneration and conversion into β-cells, the latter being functional and able to replace repeatedly all the β-cells of the pancreas. However, this transgenic approach would be difficult to implement in humans. Many screens were therefore initiated in order to find small molecules / chemical compounds that mimic the effects of Pax4. A potential compound, GABA, was identified and characterized. Our results demonstrate that treatment of WT mice with GABA results in a significant increase in the number and size of the islets (caused by insulin+ cell hyperplasia). By using lineage tracing tools, our results indicate that these "β-like" neo-generated cells are coming from glucagon+ cells.Le diabète de type 1 (DT1) résulte de la destruction des cellules β productrices d’insuline par le système immunitaire. Cette condition représente un enjeu de santé publique majeur car, malgré les thérapies actuelles, les patients atteints développent trop souvent des complications cardio-vasculaires. Des thérapies alternatives se doivent donc d’être mises au point. Ainsi, diverses approches visent à reprogrammer/différencier (in vitro ou in vivo) différents types cellulaires pancréatiques afin de générer des cellules β (productrices d’insuline) fonctionnelles. Dans ce but, notre laboratoire a notamment montré que les cellules α (productrices de glucagon) embryonnaires peuvent être régénérées et converties en cellules β fonctionnelles par l’expression ectopique du seul gène Pax4 (un gène normalement impliqué dans la spécification embryonnaire du lignage β - (Collombat and Mansouri, 2009)). Dans la première partie de ce travail, nous démontrons que les cellules α à l’âge adulte (Al-Hasani et al., 2013) retiennent leur capacité de régénération et de conversion en cellules β, celles-ci étant fonctionnelles et capable de remplacer plusieurs fois l’ensemble des cellules β du pancréas. Cependant, cette approche transgénique serait difficile à mettre en œuvre chez l’homme. De nombreux cribles furent donc initiées dans le but de trouver des petites molécules/composés chimiques mimant les effets de Pax4. Un composé potentiel, GABA, fut ainsi identifié et caractérisé

    [Reprogramming pancreatic cells to β cells].

    No full text
    International audienceType 1 diabetes (T1DM) is a common metabolic disorder affecting an ever-increasing number of patients worldwide. T1DM is caused by the selective destruction of pancreatic insulin-producing β-cells by the immune system. Such loss results in chronic hyperglycemia and could induce a number of cardio-vascular complications. Despite the classical insulin-based therapy, compared to healthy people, patients with T1DM display a shortened life expectancy due to the treatment's inability to strictly regulate glycemic levels. An alternative therapy involves pancreatic islet transplantation but the shortage of donors and the required immuno-suppressive treatments limit the widespread use of this approach. Therefore, the search of new approaches to generate functional β-cells is of growing interest. In this review, we describe several novel strategies aiming at the conversion of diverse pancreatic cells into β-cells, such as acinar, ductal, and endocrine cells. Clearly, such promising results could open new research avenues in the context of type 1 diabetes research

    Adverse Drug Reactions of Olanzapine, Clozapine and Loxapine in Children and Youth: A Systematic Pharmacogenetic Review

    No full text
    Children and youth treated with antipsychotic drugs (APs) are particularly vulnerable to adverse drug reactions (ADRs) and prone to poor treatment response. In particular, interindividual variations in drug exposure can result from differential metabolism of APs by cytochromes, subject to genetic polymorphism. CYP1A2 is pivotal in the metabolism of the APs olanzapine, clozapine, and loxapine, whose safety profile warrants caution. We aimed to shed some light on the pharmacogenetic profiles possibly associated with these drugs’ ADRs and loss of efficacy in children and youth. We conducted a systematic review relying on four databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 recommendations and checklist, with a quality assessment. Our research yielded 32 publications. The most frequent ADRs were weight gain and metabolic syndrome (18; 56.3%), followed by lack of therapeutic effect (8; 25%) and neurological ADRs (7; 21.8%). The overall mean quality score was 11.3/24 (±2.7). In 11 studies (34.3%), genotyping focused on the study of cytochromes. Findings regarding possible associations were sometimes conflicting. Nonetheless, cases of major clinical improvement were fostered by genotyping. Yet, CYP1A2 remains poorly investigated. Further studies are required to improve the assessment of the risk–benefit balance of prescription for children and youth treated with olanzapine, clozapine, and/or loxapine

    Drug-Associated Parosmia: New Perspectives from the WHO Safety Database

    No full text
    Parosmia is a qualitative distortion of smell perception. Resulting from central causes, sinonasal diseases, and infections, parosmia has also been associated with medications. Therefore, we aimed to investigate potential signals for drugs associated with parosmia. VigiBase® (the WHO pharmacovigilance database) was queried for all reports of “Parosmia” (MedDRA Preferred Term), registered up to 23 January 2022. Disproportionality analysis relied on the reporting odds ratio and the information component. A signal is detected when the lower end of the 95% confidence interval of the information component is positive. We found 14,032 reports of parosmia, with a median patient age of 53 years. Most reported drugs were antiinfectives, among which COVID-19 vaccines accounted for 27.1% of reports. Antibiotics and corticosteroids were involved in 6.8% and 4.6% of reports. Significant disproportionate reporting was detected for corticosteroids, antibiotics, drugs used in nicotine dependence, COVID-19 and HPV vaccines, serotonin–norepinephrine reuptake inhibitors (SNRI), and incretin mimetics. We suggest potential safety signals involving nicotine replacement therapies and vaccines. We also highlight the potential role of less suspected classes, such as SNRIs and incretin mimetics. An iatrogenic etiology should be evoked when parosmia occurs, especially in the elderly

    GABA signaling stimulates α-cell-mediated β-like cell neogenesis

    No full text
    Diabetes is a chronic and progressing disease, the number of patients increasing exponentially, especially in industrialized countries. Regenerating lost insulin-producing cells would represent a promising therapeutic alternative for most diabetic patients. To this end, using the mouse as a model, we reported that GABA, a food supplement, could induce insulin-producing beta-like cell neogenesis offering an attractive and innovative approach for diabetes therapeutics
    corecore