46 research outputs found

    Opportunities for detection and use of QTL influencing seasonal reproduction in sheep: a review

    Get PDF
    Genetic improvement in traits associated with seasonal breeding in sheep is challenging because these traits have low heritabilities, are generally not expressed until late in life, are commonly recorded only in females, and are expressed only in some lambing seasons and management systems. Detection of quantitative trait loci and their use in marker-assisted selection could therefore substantially enhance selection responses. A population of sheep with an extended breeding season was developed through selection for fertility in spring matings and provides opportunities for further study of candidate genes influencing seasonal breeding. In particular, the melatonin receptor 1a gene is polymorphic in many sheep breeds and appears to influence a number of seasonal reproductive responses. In addition, a variety of clock genes have been identified in laboratory mammals and shown to influence biological rhythms. Mutations in these clock genes have been identified and shown to influence circadian periodicities and reproductive patterns in golden hamster and mouse. In sheep, expression of clock genes in the suprachaismatic nucleus and pars tuberalis (PT) suggests that "calendar" cells in the ovine PT play a role in maintaining circannual rhythms. Thus the various clock genes represent potentially important candidate genes that may be involved in control of seasonal breeding

    Managing the risk of comparing estimated breeding values across flocks or herds through connectedness: a review and application

    Get PDF
    Comparing predicted breeding values (BV) among animals in different management units (e.g. flocks, herds) is challenging if units have different genetic means. Unbiased estimates of differences in BV may be obtained by assigning base animals to genetic groups according to their unit of origin, but units must be connected to estimate group effects. If many small groups exist, error of BV prediction may be increased. Alternatively, genetic groups can be excluded from the statistical model, which may bias BV predictions. If adequate genetic connections exist among units, bias is reduced. Several measures of connectedness have been proposed, but their relationships to potential bias in BV predictions are not well defined. This study compares alternative strategies to connect small units and assesses the ability of different connectedness statistics to quantify potential bias in BV prediction. Connections established using common sires across units were most effective in reducing bias. The coefficient of determination of the mean difference in predicted BV was a perfect indicator of potential bias remaining when comparing individuals in separate units. However, this measure is difficult to calculate; correlated measures such as prediction errors of differences in unit means and correlations among prediction errors are suggested as practical alternatives

    Model definition for genetic evaluation of purebred and crossbred lambs including heterosis

    Get PDF
    Crossbreeding is a common practice among commercial sheep producers to improve animal performance. However, genetic evaluation of U.S. sheep is performed within breed type (terminal sire, semi-prolific, and western range). While incorporating crossbred records may improve assessment of purebreds, it requires accounting for heterotic and breed effects in the evaluation. The objectives of this study were to: 1) describe the development of a paternal composite (PC) line, 2) determine the effect of direct and maternal heterosis on growth traits of crossbred lambs, 3) estimate (co)variance components for direct and maternal additive, and uncorrelated maternal environmental, effects, and 4) provide an interpretation of the estimates of random effects of genetic groups, and to use those solutions to compare the genetic merit of founding breed subpopulations. Data included purebred and crossbred records on birth weight (BN; n = 14,536), pre-weaning weight measured at 39 or 84 d (WN; n = 9,362) depending on year, weaning weight measured at 123 d (WW; n = 9,297), and post-weaning weight measured at 252 d (PW; n = 1,614). Mean (SD) body weights were 5.3 (1.1), 16.8 (3.9) and 28.0 (7.6), 39.1 (7.2), and 54.2 (8.7) kg for BN, WN (at the two ages), WW, and PW, respectively. In designed experiments, the Siremax, Suffolk, Texel, Polypay, Columbia, Rambouillet, and Targhee breeds were compared within the same environment. Estimates of heterotic effects and covariance components were obtained using a multiple trait animal model. Genetic effects based on foundersā€™ breeds were significant and included in the model. Percent estimates of direct heterosis were 2.89 Ā± 0.61, 2.60 Ā± 0.65, 4.24 Ā± 0.56, and 6.09 Ā± 0.86, and estimates of maternal heterosis were 1.92 Ā± 0.87, 4.64 Ā± 0.80, 3.95 Ā± 0.66, and 4.04 Ā± 0.91, for BN, WN, WW, and PW, respectively. Correspondingly, direct heritability estimates were 0.17 Ā± 0.02, 0.13 Ā± 0.02, 0.17 Ā± 0.02, and 0.46 Ā± 0.04 for BN, WN, WW, and PW. Additive maternal effects accounted for trivial variation in PW. For BN, WN, and WW, respectively, maternal heritability estimates were 0.16 Ā± 0.02, 0.10 Ā± 0.02, and 0.07 Ā± 0.01. Uncorrelated maternal environmental effects accounted for little variation in any trait. Direct and maternal heterosis had considerable impact on growth traits, emphasizing the value of crossbreeding and the need to account for heterosis, in addition to breed effects, if crossbred lamb information is included in genetic evaluation. Lay Summary Crossbreeding is common in commercial sheep enterprises. It allows breeds with different attributes to be combined to generate crossbred progeny tailored to production environments and customer preferences. Additionally, crossbreds often benefit from heterosis, performing at levels above the average of their parental breeds. Over two decades, body weights were collected at birth and at pre-weaning, weaning, and post-weaning ages on purebred and crossbred lambs from semi-prolific (Polypay), western range (Columbia, Rambouillet, Targhee), and terminal sire (Siremax, Suffolk, Texel) breeds at the U.S. Sheep Experiment Station. When combined, the value of direct heterosisā€”that due to a lamb being crossbredā€”and maternal heterosisā€”that due to the lambā€™s dam being crossbredā€”increased birth (5%) and post-natal (up to 10%) weights in crossbred lambs. This highlights the value of crossbreeding to the U.S. sheep industry, especially in western range production systems. Genetic variation between and within breeds also was detected for the purebred parental breeds. Such heterotic and breed effects must be accounted for if crossbred performance is to be incorporated in genetic evaluation of purebreds. Therefore, these results provide the foundation for utilizing crossbred information in the evaluation and selection of purebred sheep in the United States

    Genetic evaluation of days to harvest in crossbred lambs

    Get PDF
    Days to harvest (DTH) is the number of days a lamb is fed before reaching a target level of fatness. Although economically relevant, this trait has not been thoroughly evaluated in sheep. Most lambs harvested in the United Kingdom are crossbreds sired by purebred terminal sires, with Charollais, Suffolk, and Texel most commonly used. Sires from these breeds were selected on an index designed to increase lean growth while constraining fat. The purpose of this research was to 1) evaluate the effects of index selection in terminal sires on DTH and 2) evaluate the feasibility of incorporating DTH into genetic evaluation programs. Charollais, Suffolk, and Texel sheep had participated in sire referencing schemes where genetic links among flocks were established by sharing rams. Rams with high or low index scores were chosen from these schemes and mated to crossbred ewes at 3 farms in the United Kingdom. Lambs were harvested at a target 11% subcutaneous fat. Records on DTH from 6,350 lambs were analyzed in 2 ways: 1) as time to harvest fitting a survival model and 2) as a normally distributed variable in a bivariate analysis with weight at harvest. The survival analysis was stratified by rearing type (single or twin). In both approaches, sires were fitted using a multivariate normal distribution with a relationship matrix. Regardless of model fitted, sire index did not affect DTH (P \u3e 0.10). However, Texel-sired lambs reached harvest faster (P \u3c 0.01) than either Charollais- or Suffolk-sired lambs although DTH in those 2 breed types did not differ (P \u3e 0.1). Ewe lambs reached harvest faster than wethers (P \u3c 0.01). Lambs from older ewes were harvested faster (P \u3c 0.001). The heritability of DTH was 0.21 from the survival model and 0.20 from the bivariate model. Rank correlation of sire EBV between methods was 0.9, suggesting strong agreement. The use of high or low index sires did not extend DTH in lambs harvested at a target fatness. Importantly, there is no antagonism between improving carcass merit and extending the grazing season. Furthermore, DTH is moderately heritable. If economically justified within a breeding program, it could be reduced through genetic selection

    Variants Within Genes \u3ci\u3eEDIL3\u3c/i\u3e and \u3ci\u3eADGRB3\u3c/i\u3e are Associated With Divergent Fecal Egg Counts in Katahdin Sheep at Weaning

    Get PDF
    Gastrointestinal nematodes (GIN) pose a severe threat to sheep production worldwide. Anthelmintic drug resistance coupled with growing concern regarding potential environmental effects of drug use have demonstrated the necessity of implementing other methods of GIN control. The aim of this study was to test for genetic variants associated with resistance or susceptibility to GIN in Katahdin sheep to improve the current understanding of the genetic mechanisms responsible for host response to GIN. Linear regression and casecontrol genome-wide association studies were conducted with high-density genotype data and cube-root transformed weaning fecal egg counts (tFEC) of 583 Katahdin sheep. The casecontrol GWAS identified two significant SNPs (P-values 1.49e-08 to 1.01e-08) within introns of the gene adhesion G protein-coupled receptor B3 (ADGRB3) associated with lower fecal egg counts. With linear regression, four significant SNPs (P-values 7.82e-08 to 3.34e-08) were identified within the first intron of the gene EGF-like repeats and discoidin domains 3 (EDIL3). These identified SNPs were in very high linkage disequilibrium (r2 of 0.996ā€“1), and animals with alternate homozygous genotypes had significantly higher median weaning tFEC phenotypes compared to all other genotypes. Significant SNPs were queried through public databases to identify putative transcription factor binding site (TFBS) and potential lncRNA differences between reference and alternate alleles. Changes in TFBS were predicted at two SNPs, and one significant SNPwas found to bewithin a predicted lncRNA sequencewith greater than 90% similarity to a known lncRNA in the bovine genome. The gene EDIL3 has been described in other species for its roles in the inhibition and resolution of inflammation. Potential changes of EDIL3 expression mediated through lncRNA expression and/or transcription factor binding may impact the overall immune response and reduce the ability of Katahdin sheep to control GIN infection. This study lays the foundation for further research of EDIL3 and ADGRB3 towards understanding genetic mechanisms of susceptibility to GIN, and suggests these SNPs may contribute to genetic strategies for improving parasite resistance traits in sheep

    Single Nucleotide Polymorphism Effects on Lamb Fecal Egg Count Estimated Breeding Values in Progeny-Tested Katahdin Sires

    Get PDF
    Publication history: Accepted - 14 April 2022; Published - 3 May 2022.Estimated breeding values (EBV) for fecal egg counts (FEC) at 42ā€“90 days of age (WFEC) and 91ā€“150 days of age (PFEC) for 84 progeny-tested Katahdin sires were used to identify associations of deregressed EBV with single-nucleotide polymorphisms (SNP) using 388,000 SNP with minor-allele frequencies ā‰„0.10 on an Illumina high-density ovine array. Associations betweenmarkers and FEC EBVwere initially quantified by single-SNP linear regression. Effects of linkage disequilibrium (LD) were minimized by assigning SNP to 2,535 consecutive 1-Mb bins and focusing on the effect of the most significant SNP in each bin. Bonferroni correction was used to define bin-based (BB) genome- and chromosome-wide significance. Six bins on chromosome 5 achieved BB genome-wide significance for PFEC EBV, and three of those SNP achieved chromosome-wide significance after Bonferroni correction based on the 14,530 total SNP on chromosome 5. These bins were nested within 12 consecutive bins between 59 and 71 Mb on chromosome 5 that reached BB chromosome-wide significance. The largest SNP effects were at 63, 67, and 70Mb, with LD among these SNP of r2 ā‰¤ 0.2. Regional heritability mapping (RHM) was then used to evaluate the ability of different genomic regions to account for additive variance in FEC EBV. Chromosome-level RHM indicated that one 500-SNP window between 65.9 and 69.9Mb accounted for significant variation in PFEC EBV. Five additional 500-SNP windows between 59.3 and 71.6 Mb reached suggestive (p < 0.10) significance for PFEC EBV. Although previous studies rarely identified markers for parasite resistance on chromosome 5, the IL12B gene at 68.5 Mbcodes for the p40 subunit of both interleukins 12 and 23. Other immunoregulatory genes are also located in this region of chromosome 5, providing opportunity for additive or associative effects.This research was funded by the USDA NIFA Organic Agriculture Research and Extension Initiative grants no. 2016- 51300-25723 and 2010-51300-21641, and USDA Southern SARE grant no. LS08-204

    Analysis of conservation priorities of Iberoamerican cattle based on autosomal microsatellite markers

    Get PDF
    Articles in International JournalsBackground: Determining the value of livestock breeds is essential to define conservation priorities, manage genetic diversity and allocate funds. Within- and between-breed genetic diversity need to be assessed to preserve the highest intra-specific variability. Information on genetic diversity and risk status is still lacking for many Creole cattle breeds from the Americas, despite their distinct evolutionary trajectories and adaptation to extreme environmental conditions. Methods: A comprehensive genetic analysis of 67 Iberoamerican cattle breeds was carried out with 19 FAOrecommended microsatellites to assess conservation priorities. Contributions to global diversity were investigated using alternative methods, with different weights given to the within- and between-breed components of genetic diversity. Information on Iberoamerican plus 15 worldwide cattle breeds was used to investigate the contribution of geographical breed groups to global genetic diversity. Results: Overall, Creole cattle breeds showed a high level of genetic diversity with the highest level found in breeds admixed with zebu cattle, which were clearly differentiated from all other breeds. Within-breed kinships revealed seven highly inbred Creole breeds for which measures are needed to avoid further genetic erosion. However, if contribution to heterozygosity was the only criterion considered, some of these breeds had the lowest priority for conservation decisions. The Weitzman approach prioritized highly differentiated breeds, such as GuabalĆ”, Romosinuano, Cr. Patagonico, Siboney and CaracĆŗ, while kinship-based methods prioritized mainly zebu-related breeds. With the combined approaches, breed ranking depended on the weights given to the within- and between-breed components of diversity. Overall, the Creole groups of breeds were generally assigned a higher priority for conservation than the European groups of breeds. Conclusions: Conservation priorities differed significantly according to the weight given to within- and betweenbreed genetic diversity. Thus, when establishing conservation programs, it is necessary to also take into account other features. Creole cattle and local isolated breeds retain a high level of genetic diversity. The development of sustainable breeding and crossbreeding programs for Creole breeds, and the added value resulting from their products should be taken into consideration to ensure their long-term survival

    Effects of birth-rearing type on weaning weights in meat sheep are systematically associated with differences in mean performance among flocks

    No full text
    Background: Adjustment of body weights for systematic environmental effects such as dam age and litter size is essential for accurate prediction of breeding values in meat sheep and often accomplished by pre-adjusting records using simple multiplicative adjustment factors, which are derived as ratios of least-squares means of weights of lambs in target and reference classes. However, increasing use of multibreed genetic evaluations that incorporate data from both purebred and commercial flocks has generated concerns regarding the ability of simple additive or multiplicative adjustment factors to properly correct for environmental effects in flocks that differ widely in mean performance. Thus, consistency of adjustment factors across flocks and systematic effects of the level of flock performance on these factors were evaluated using data from the US National Sheep Improvement Program. Methods: We used birth and weaning weights of lambs from 29 flocks that had at least 500 records per flock and represented several terminal-sire sheep breeds. Effects of lamb sex, dam age class and litter size on birth weights, and of dam age class and combined effects of type of birth and rearing on weaning weights were evaluated. Interactions between these effects and flock were assessed. Bias associated with different adjustment protocols was evaluated for high- and low-performance flocks. Results: Effects of litter size and differences between yearling and adult dams varied (

    Managing the risk of comparing estimated breeding values across flocks or herds through connectedness: a review and application

    No full text
    Abstract Comparing predicted breeding values (BV) among animals in different management units (e.g. flocks, herds) is challenging if units have different genetic means. Unbiased estimates of differences in BV may be obtained by assigning base animals to genetic groups according to their unit of origin, but units must be connected to estimate group effects. If many small groups exist, error of BV prediction may be increased. Alternatively, genetic groups can be excluded from the statistical model, which may bias BV predictions. If adequate genetic connections exist among units, bias is reduced. Several measures of connectedness have been proposed, but their relationships to potential bias in BV predictions are not well defined. This study compares alternative strategies to connect small units and assesses the ability of different connectedness statistics to quantify potential bias in BV prediction. Connections established using common sires across units were most effective in reducing bias. The coefficient of determination of the mean difference in predicted BV was a perfect indicator of potential bias remaining when comparing individuals in separate units. However, this measure is difficult to calculate; correlated measures such as prediction errors of differences in unit means and correlations among prediction errors are suggested as practical alternatives.</p
    corecore