5 research outputs found

    Clinical Validation of a 3-Dimensional Ultrafast Cardiac Magnetic Resonance Protocol Including Single Breath-Hold 3-Dimensional Sequences

    Get PDF
    Objectives: This study sought to clinically validate a novel 3-dimensional (3D) ultrafast cardiac magnetic resonance (CMR) protocol including cine (anatomy and function) and late gadolinium enhancement (LGE), each in a single breath-hold. Background: CMR is the reference tool for cardiac imaging but is time-consuming. Methods: A protocol comprising isotropic 3D cine (Enhanced sensitivity encoding [SENSE] by Static Outer volume Subtraction [ESSOS]) and isotropic 3D LGE sequences was compared with a standard cine+LGE protocol in a prospective study of 107 patients (age 58 ± 11 years; 24% female). Left ventricular (LV) mass, volumes, and LV and right ventricular (RV) ejection fraction (LVEF, RVEF) were assessed by 3D ESSOS and 2D cine CMR. LGE (% LV) was assessed using 3D and 2D sequences. Results: Three-dimensional and LGE acquisitions lasted 24 and 22 s, respectively. Three-dimensional and LGE images were of good quality and allowed quantification in all cases. Mean LVEF by 3D and 2D CMR were 51 ± 12% and 52 ± 12%, respectively, with excellent intermethod agreement (intraclass correlation coefficient [ICC]: 0.96; 95% confidence interval [CI]: 0.94 to 0.97) and insignificant bias. Mean RVEF 3D and 2D CMR were 60.4 ± 5.4% and 59.7 ± 5.2%, respectively, with acceptable intermethod agreement (ICC: 0.73; 95% CI: 0.63 to 0.81) and insignificant bias. Both 2D and 3D LGE showed excellent agreement, and intraobserver and interobserver agreement were excellent for 3D LGE. Conclusions: ESSOS single breath-hold 3D CMR allows accurate assessment of heart anatomy and function. Combining ESSOS with 3D LGE allows complete cardiac examination in less than 1 min of acquisition time. This protocol expands the indication for CMR, reduces costs, and increases patient comfort. (J Am Coll Cardiol Img 2021;14:1742–1754)Funding included Instituto de Salud Carlos III (ISCIII) and the European Regional Development Fund (ERDF) Grants DTS17/00136 to Dr. Ibáñez and PI19/01704 to Dr. Fernandez-Jimenez; Spanish Society of Cardiology Translational Research Grant 2016 to Dr. Ibáñez; European Research Council ERC-CoG 819775-MATRIX to Dr. Ibáñez; Comunidad de Madrid S2017/BMD-3867-RENIM-CM to Drs. Desco and Ibáñez; and Ministerio de Ciencia e Innovación (MICINN) RETOS2019-107332RB-I00 to Dr. Ibáñez. Dr. Fernandez-Jimenez received funding from the European Union Horizon 2020 research and innovation programme under Marie Sklodowska-Curie Hrant Agreement No. 707642. The CNIC is supported by the ISCIII, the MICINN, and the Pro CNIC Foundation. Drs. Fernandez-Jimenez, Nothnagel, Fuster, Ibáñez, and Javier Sánchez-González are inventors of a joint patent (Philips/CNIC) for the new cine imaging method here described and validated/protected under the IP #2014P00960EP. Drs. Nothnagel, Kouwenhoven, Clemence, and Javier Sánchez-González are Philips employees. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose

    Optimization of dual-saturation single bolus acquisition for quantitative cardiac perfusion and myocardial blood flow maps

    Get PDF
    BACKGROUND: In-vivo quantification of cardiac perfusion is of great research and clinical value. The dual-bolus strategy is universally used in clinical protocols but has known limitations. The dual-saturation acquisition strategy has been proposed as a more accurate alternative, but has not been validated across the wide range of perfusion rates encountered clinically. Dual-saturation acquisition also lacks a clinically-applicable procedure for optimizing parameter selection. Here we present a comprehensive validation study of dual-saturation strategy in vitro and in vivo. METHODS: The impact of saturation time and profile ordering in acquisitions was systematically analyzed in a phantom consisting of 15 tubes containing different concentrations of contrast agent. In-vivo experiments in healthy pigs were conducted to evaluate the effect of R2* on the definition of the arterial input function (AIF) and to evaluate the relationship between R2* and R1 variations during first-pass of the contrast agent. Quantification by dual-saturation perfusion was compared with the reference-standard dual-bolus strategy in 11 pigs with different grades of myocardial perfusion. RESULTS: Adequate flow estimation by the dual-saturation strategy is achieved with myocardial tissue saturation times around 100 ms (always <30 ms of AIF), with the lowest echo time, and following a signal model for contrast conversion that takes into account the residual R2* effect and profile ordering. There was a good correlation and agreement between myocardial perfusion quantitation by dual-saturation and dual-bolus techniques (R(2) = 0.92, mean difference of 0.1 ml/min/g; myocardial perfusion ranges between 0.18 and 3.93 ml/min/g). CONCLUSIONS: The dual-saturation acquisition strategy produces accurate estimates of absolute myocardial perfusion in vivo. The procedure presented here can be applied with minimal interference in standard clinical procedures

    Optimization of dual-saturation single bolus acquisition for quantitative cardiac perfusion and myocardial blood flow maps

    Get PDF
    Background: In-vivo quantification of cardiac perfusion is of great research and clinical value. The dual-bolus strategy is universally used in clinical protocols but has known limitations. The dual-saturation acquisition strategy has been proposed as a more accurate alternative, but has not been validated across the wide range of perfusion rates encountered clinically. Dual-saturation acquisition also lacks a clinically-applicable procedure for optimizing parameter selection. Here we present a comprehensive validation study of dual-saturation strategy in vitro and in vivo. Methods: The impact of saturation time and profile ordering in acquisitions was systematically analyzed in a phantom consisting of 15 tubes containing different concentrations of contrast agent. In-vivo experiments in healthy pigs were conducted to evaluate the effect of R2{*} on the definition of the arterial input function (AIF) and to evaluate the relationship between R2{*} and R1 variations during first-pass of the contrast agent. Quantification by dual-saturation perfusion was compared with the reference-standard dual-bolus strategy in 11 pigs with different grades of myocardial perfusion. Results: Adequate flow estimation by the dual-saturation strategy is achieved with myocardial tissue saturation times around 100 ms (always < 30 ms of AIF), with the lowest echo time, and following a signal model for contrast conversion that takes into account the residual R2{*} effect and profile ordering. There was a good correlation and agreement between myocardial perfusion quantitation by dual-saturation and dual-bolus techniques (R-2 = 0.92, mean difference of 0.1 ml/min/g; myocardial perfusion ranges between 0.18 and 3.93 ml/min/g). Conclusions: The dual-saturation acquisition strategy produces accurate estimates of absolute myocardial perfusion in vivo. The procedure presented here can be applied with minimal interference in standard clinical procedures.This work was supported by a competitive grant from the Ministry of Economy and Competitiveness (MINECO), Fondo Europeo de Desarrollo Regional (FEDER, SAF2013-49663-EXP), Carlos III Institute of Health-Fondo de Investigacion Sanitaria (PI13/01979), and FP7-HEALTH-2009 ``Cardio Repair European Multidisciplinary Initiative (CARE-MI)´´. This study forms part of a Master Research Agreement between CNIC and Philips Healthcare. The Spanish Ministry of Economy and Competitiveness and the Pro-CNIC Foundation support the CNIC. Dr. Fermandez-Jimenez is a recipient of a Rio Hortega fellowship from the Ministry of Economy and Competitiveness through the Instituto de Salud Carlos III; and has received a FICNIC fellowship from the Fundacio Jesus Serra, the Fundacion Interhospitalaria de Investigacion Cardiovascular, and the CNIC. Nils Nothnagel is a P7-PEOPLE-2011-ITN `` Translational Training network on the Cellular and Molecular Bases of Heart Homeostasis and Repair´´ fellow. Dr. Sanchez-Gonzalez is an employee of Philips Healthcare.. B.I is supported by the Red de Investigacion Cardiovascular (RIC) of the Spanish Ministry of Health (RD 12/0042/0054). Simon Bartlett (CNIC) provided English editing. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose

    Clinical Validation of a 3-Dimensional Ultrafast Cardiac Magnetic Resonance Protocol Including Single Breath-Hold 3-Dimensional Sequences

    No full text
    Objectives: This study sought to clinically validate a novel 3-dimensional (3D) ultrafast cardiac magnetic resonance (CMR) protocol including cine (anatomy and function) and late gadolinium enhancement (LGE), each in a single breath-hold. Background: CMR is the reference tool for cardiac imaging but is time-consuming. Methods: A protocol comprising isotropic 3D cine (Enhanced sensitivity encoding [SENSE] by Static Outer volume Subtraction [ESSOS]) and isotropic 3D LGE sequences was compared with a standard cine+LGE protocol in a prospective study of 107 patients (age 58 ± 11 years; 24% female). Left ventricular (LV) mass, volumes, and LV and right ventricular (RV) ejection fraction (LVEF, RVEF) were assessed by 3D ESSOS and 2D cine CMR. LGE (% LV) was assessed using 3D and 2D sequences. Results: Three-dimensional and LGE acquisitions lasted 24 and 22 s, respectively. Three-dimensional and LGE images were of good quality and allowed quantification in all cases. Mean LVEF by 3D and 2D CMR were 51 ± 12% and 52 ± 12%, respectively, with excellent intermethod agreement (intraclass correlation coefficient [ICC]: 0.96; 95% confidence interval [CI]: 0.94 to 0.97) and insignificant bias. Mean RVEF 3D and 2D CMR were 60.4 ± 5.4% and 59.7 ± 5.2%, respectively, with acceptable intermethod agreement (ICC: 0.73; 95% CI: 0.63 to 0.81) and insignificant bias. Both 2D and 3D LGE showed excellent agreement, and intraobserver and interobserver agreement were excellent for 3D LGE. Conclusions: ESSOS single breath-hold 3D CMR allows accurate assessment of heart anatomy and function. Combining ESSOS with 3D LGE allows complete cardiac examination in <1 min of acquisition time. This protocol expands the indication for CMR, reduces costs, and increases patient comfort.Salud Carlos III (ISCIII) and the European Regional Development Fund (ERDF) (DTS17/00136, PI19/01704)Spanish Society of Cardiology Translational Research Grant 2016 European Research Council (ERC-CoG 819775)Comunidad de Madrid (S2017/BMD-3867-RENIM-CM)Ministerio de Ciencia e Innovación (MICINN) (RETOS2019-107332RB-I00)14.805 JCR (2020) Q1, 8/142 Cardiac & Cardiovascular SystemsUEM5.914 SJR (2021) Q1, 5/356 Cardiology and Cardiovascular MedicineNo data IDR 202

    Quellen- und Literaturverzeichnis

    No full text
    corecore