115 research outputs found

    The Fritz Legacy

    Get PDF

    Hierarchical aesthetic quality assessment using deep convolutional neural networks

    Get PDF
    Aesthetic image analysis has attracted much attention in recent years. However, assessing the aesthetic quality and assigning an aesthetic score are challenging problems. In this paper, we propose a novel framework for assessing the aesthetic quality of images. Firstly, we divide the images into three categories: “scene”, “object” and “texture”. Each category has an associated convolutional neural network (CNN) which learns the aesthetic features for the category in question. The object CNN is trained using the whole images and a salient region in each image. The texture CNN is trained using small regions in the original images. Furthermore, an A & C CNN is developed to simultaneously assess the aesthetic quality and identify the category for overall images. For each CNN, classification and regression models are developed separately to predict aesthetic class (high or low) and to assign an aesthetic score. Experimental results on a recently published large-scale dataset show that the proposed method can outperform the state-of-the-art methods for each category

    Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death

    Get PDF
    Survival within macrophages is a central feature of Mycobacterium tuberculosis pathogenesis. Despite significant advances in identifying new immunological parameters associated with mycobacterial disease, some basic questions on the intracellular fate of the causative agent of human tuberculosis in antigen-presenting cells are still under debate. To get novel insights into this matter, we used a single-cell fluorescence resonance energy transfer (FRET)-based method to investigate the potential cytosolic access of M. tuberculosis and the resulting cellular consequences in an unbiased, quantitative way. Analysis of thousands of THP-1 macrophages infected with selected wild-type or mutant strains of the M. tuberculosis complex unambiguously showed that M. tuberculosis induced a change in the FRET signal after 3 to 4 days of infection, indicating phagolysosomal rupture and cytosolic access. These effects were not seen for the strains M. tuberculosisΔRD1 or BCG, both lacking the ESX-1 secreted protein ESAT-6, which reportedly shows membrane-lysing properties. Complementation of these strains with the ESX-1 secretion system of M. tuberculosis restored the ability to cause phagolysosomal rupture. In addition, control experiments with the fish pathogen Mycobacterium marinum showed phagolysosomal translocation only for ESX-1 intact strains, further validating our experimental approach. Most importantly, for M. tuberculosis as well as for M. marinum we observed that phagolysosomal rupture was followed by necrotic cell death of the infected macrophages, whereas ESX-1 deletion- or truncation-mutants that remained enclosed within phagolysosomal compartments did not induce such cytotoxicity. Hence, we provide a novel mechanism how ESX-1 competent, virulent M. tuberculosis and M. marinum strains induce host cell death and thereby escape innate host defenses and favor their spread to new cells. In this respect, our results also open new research directions in relation with the extracellular localization of M. tuberculosis inside necrotic lesions that can now be tackled from a completely new perspective

    eSport und Arbeitsrecht

    No full text

    Geschäftsmodelle im Sportbusiness

    No full text
    • …
    corecore