7 research outputs found

    Will dairy cattle production in West Africa be challenged by heat stress in the future?

    Get PDF
    This study focuses on heat stress conditions for dairy cattle production in West Africa under current and future climatic conditions. After testing the accuracy of the dynamically downscaled climate datasets for simulating the historical daily maximum temperature (Tmax) and relative humidity (RH) in West Africa for 50 meteorological stations, we used the dataset for calculating the temperature-humidity index (THI), i.e., an index indicating heat stress for dairy cattle on a daily scale. Calculations were made for the historical period (1981–2010) using the ERA-Interim reanalysis dataset, and for two future periods (2021–2050 and 2071–2100) using climate predictions of the GFDLESM2M, HadGEM2-ES, and MPI-ESM-MR Global Circulation Models (GCMs) under the RCP4.5 emission scenario. Here, we show that during the period from 1981 to 2010 for > 1/5 of the region of West Africa, the frequency of severe/danger heat events per year, i.e., events that result in significant decreases in productive and reproductive performances, increased from 11 to 29–38 days (significant at 95% confidence level). Most obvious changes were observed for the eastern and southeastern parts. Under future climate conditions periods with severe/danger heat stress events will increase further as compared with the historical period by 5–22% depending on the GCM used. Moreover, the average length of periods with severe/danger heat stress is expected to increase from ~ 3 days in the historical period to ~ 4–7 days by 2021–2050 and even to up to 10 days by 2071–2100. Based on the average results of three GCMs, by 2071–2100, around 22% of dairy cattle population currently living in this area is expected to experience around 70 days more of severe/danger heat stress (compare with the historical period), especially in the southern half of West Africa. The result is alarming, as it shows that dairy production systems in West Africa are jeopardized at large scale by climate change and that depending on the GCMused, milk production might decrease by 200–400 kg/year by 2071–2100 in around 1, 7, or 11%. Our study calls for the development of improved dairy cattle production systems with higher adaptive capacity in order to deal with expected future heat stress conditions

    A shift from cattle to camel and goat farming can sustain milk production with lower inputs and emissions in north sub-Saharan Africa’s drylands

    Get PDF
    Climate change is increasingly putting milk production from cattle-based dairy systems in north sub-Saharan Africa (NSSA) under stress, threatening livelihoods and food security. Here we combine livestock heat stress frequency, dry matter feed production and water accessibility data to understand where environmental changes in NSSA’s drylands are jeopardizing cattle milk production. We show that environmental conditions worsened for ∼17% of the study area. Increasing goat and camel populations by ∼14% (∼7.7 million) and ∼10% (∼1.2 million), respectively, while reducing the dairy cattle population by ∼24% (∼5.9 million), could result in ∼0.14 Mt (+5.7%) higher milk production, lower water (−1,683.6 million m3, −15.3%) and feed resource (−404.3 Mt, −11.2%) demand—and lower dairy emissions by ∼1,224.6 MtCO2e (−7.9%). Shifting herd composition from cattle towards the inclusion of, or replacement with, goats and camels can secure milk production and support NSSA’s dairy production resilience against climate change

    Tapping into the environmental co-benefits of improved tropical forages for an agroecological transformation of livestock production systems

    Get PDF
    Livestock are critical for incomes, livelihoods, nutrition and ecosystems management throughout the global South. Livestock production and the consumption of livestock-based foods such as meat, cheese, and milk is, however, under global scrutiny for its contribution to global warming, deforestation, biodiversity loss, water use, pollution, and land/soil degradation. This paper argues that, although the environmental footprint of livestock production presents a real threat to planetary sustainability, also in the global south, this is highly contextual. Under certain context-specific management regimes livestock can deliver multiple benefits for people and planet. We provide evidence that a move toward sustainable intensification of livestock production is possible and could mitigate negative environmental impacts and even provide critical ecosystem services, such as improved soil health, carbon sequestration, and enhanced biodiversity on farms. The use of cultivated forages, many improved through selection or breeding and including grasses, legumes and trees, in integrated crop-tree-livestock systems is proposed as a stepping stone toward agroecological transformation. We introduce cultivated forages, explain their multi-functionality and provide an overview of where and to what extent the forages have been applied and how this has benefited people and the planet alike. We then examine their potential to contribute to the 13 principles of agroecology and find that integrating cultivated forages in mixed crop-tree-livestock systems follows a wide range of agroecological principles and increases the sustainability of livestock production across the globe. More research is, however, needed at the food system scale to fully understand the role of forages in the sociological and process aspects of agroecology. We make the case for further genetic improvement of cultivated forages and strong multi-disciplinary systems research to strengthen our understanding of the multidimensional impacts of forages and for managing agro-environmental trade-offs. We finish with a call for action, for the agroecological and livestock research and development communities to improve communication and join hands for a sustainable agri-food system transformation

    Will dairy cattle production in West Africa be challenged by heat stress in the future?

    No full text
    This study focuses on heat stress conditions for dairy cattle production in West Africa under current and future climatic conditions. After testing the accuracy of the dynamically downscaled climate datasets for simulating the historical daily maximum temperature (Tmax) and relative humidity (RH) in West Africa for 50 meteorological stations, we used the dataset for calculating the temperature-humidity index (THI), i.e., an index indicating heat stress for dairy cattle on a daily scale. Calculations were made for the historical period (1981–2010) using the ERA-Interim reanalysis dataset, and for two future periods (2021–2050 and 2071–2100) using climate predictions of the GFDL-ESM2M, HadGEM2-ES, and MPI-ESM-MR Global Circulation Models (GCMs) under the RCP4.5 emission scenario. Here, we show that during the period from 1981 to 2010 for > 1/5 of the region of West Africa, the frequency of severe/danger heat events per year, i.e., events that result in significant decreases in productive and reproductive performances, increased from 11 to 29–38 days (significant at 95% confidence level). Most obvious changes were observed for the eastern and southeastern parts. Under future climate conditions periods with severe/danger heat stress events will increase further as compared with the historical period by 5–22% depending on the GCM used. Moreover, the average length of periods with severe/danger heat stress is expected to increase from ~ 3 days in the historical period to ~ 4–7 days by 2021–2050 and even to up to 10 days by 2071–2100. Based on the average results of three GCMs, by 2071–2100, around 22% of dairy cattle population currently living in this area is expected to experience around 70 days more of severe/danger heat stress (compare with the historical period), especially in the southern half of West Africa. The result is alarming, as it shows that dairy production systems in West Africa are jeopardized at large scale by climate change and that depending on the GCM used, milk production might decrease by 200–400 kg/year by 2071–2100 in around 1, 7, or 11%. Our study calls for the development of improved dairy cattle production systems with higher adaptive capacity in order to deal with expected future heat stress conditions.African Union Commissio

    Livelihood mapping and poverty correlates at a meso-level in Kenya

    No full text
    We identify and map critical spatial factors grouped into natural, human, social, financial and physical capital assets, which largely determine livelihood options, strategies and welfare of agro-pastoral communities in a semi-arid district of southern Kenya. Our approach builds upon new, relatively high-resolution spatial poverty data and refines participatory land-use mapping methods, making valuable information on natural and social resource availability and access useful for policy makers. While most poverty analyses focus on the household, we employ quantitative spatial data analysis methods to examine the spatial correlates of meso-, or community-level poverty incidence. The results suggest that variables influencing poverty levels in this district include pasture potential, livestock density, distance to a major town, road density, access to education, access to security, soil fertility and agricultural potential. Because of the participatory research process taken, these results are already feeding into both local- and national-level policy processes aimed at reducing poverty in Kenya

    Pig production in Uganda - adapting to climate change

    No full text
    There is limited attention to impacts of climate change on pigs in Uganda by stakeholders, despite the potential vulnerability of pigs to climate change. Pigs are sensitive to heat-stress, as they do not have functioning sweat glands as other livestock species do, and have small lungs which reduces their ability to disseminate heat by panting. The objectives of the study were to i) determine the heat-stress status in pigs, ii) analyze factors influencing heat-stress, and iii) explore the heat-stress adaptation options in Lira District, Uganda. Lira was selected because of presence of both rural & urban areas and expected heat stress throughout the year in the district. The data including household demographics, management systems, age, color, breeds, body/skin temperature, rectal temperature and others were collected from 104 households and 259 pigs during the hot months in Ojwina and Barr sub-counties- Lira district. We collected data on adaptation options during the four gender disaggregated focus group discussions. Weather data was collected during the time of administering the questionnaire, and it was complemented with data from Ngetta Meteorological Station, Lira. (2020-01-30
    corecore