175 research outputs found

    Porphyrin-modified antimicrobial peptide indicators for detection of bacteria

    Get PDF
    This study demonstrates the potential of porphyrin modified antimicrobial peptides for indication of bacterial targets on the basis of changes in the spectrophotometric characteristics of the construct. Detection is a result of changes in the structure of the antimicrobial peptide upon target binding. Those constructs comprised of peptides that offer little or no change in conformation upon interaction with bacterial cells demonstrated negligible changes in absorbance and fluorescence when challenged using Escherichia coli or Bacillus cereus. CD analysis confirms the presence/absence of conformational changes in the porphyrin-peptide constructs. Differing spectrophotometric responses were observed for constructs utilizing different peptides. The incorporation of metals into the porphyrin component of the constructs was shown to alter their spectrophotometric characteristics as well as the resulting absorbance and fluorescence changes noted upon interaction with a target. The described constructs offer the potential to enable a new type of biosensing approach in which the porphyrin-peptide indicators offer both target recognition and optical transduction, requiring no additional reagents

    Molt-dependent transcriptomic analysis of cement proteins in the barnacle Amphibalanus amphitrite

    Full text link
    Abstract Background A complete understanding of barnacle adhesion remains elusive as the process occurs within and beneath the confines of a rigid calcified shell. Barnacle cement is mainly proteinaceous and several individual proteins have been identified in the hardened cement at the barnacle-substrate interface. Little is known about the molt- and tissue-specific expression of cement protein genes but could offer valuable insight into the complex multi-step processes of barnacle growth and adhesion. Methods The main body and sub-mantle tissue of the barnacle Amphibalanus amphitrite (basionym Balanus amphitrite) were collected in pre- and post-molt stages. RNA-seq technology was used to analyze the transcriptome for differential gene expression at these two stages and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze the protein content of barnacle secretions. Results We report on the transcriptomic analysis of barnacle cement gland tissue in pre- and post-molt growth stages and proteomic investigation of barnacle secretions. While no significant difference was found in the expression of cement proteins genes at pre- and post-molting stages, expression levels were highly elevated in the sub-mantle tissue (where the cement glands are located) compared to the main barnacle body. We report the discovery of a novel 114kD cement protein, which is identified in material secreted onto various surfaces by adult barnacles and with the encoding gene highly expressed in the sub-mantle tissue. Further differential gene expression analysis of the sub-mantle tissue samples reveals a limited number of genes highly expressed in pre-molt samples with a range of functions including cuticular development, biominerialization, and proteolytic activity. Conclusions The expression of cement protein genes appears to remain constant through the molt cycle and is largely confined to the sub-mantle tissue. Our results reveal a novel and potentially prominent protein to the mix of cement-related components in A. amphitrite. Despite the lack of a complete genome, sample collection allowed for extended transcriptomic analysis of pre- and post-molt barnacle samples and identified a number of highly-expressed genes. Our results highlight the complexities of this sessile marine organism as it grows via molt cycles and increases the area over which it exhibits robust adhesion to its substrate.http://deepblue.lib.umich.edu/bitstream/2027.42/115487/1/12864_2015_Article_2076.pd

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde

    UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) Binds to Alpha-Actinin 1: Novel Pathways in Skeletal Muscle?

    Get PDF
    Hereditary inclusion body myopathy (HIBM) is a rare neuromuscular disorder caused by mutations in GNE, the key enzyme in the biosynthetic pathway of sialic acid. While the mechanism leading from GNE mutations to the HIBM phenotype is not yet understood, we searched for proteins potentially interacting with GNE, which could give some insights about novel putative biological functions of GNE in muscle. We used a Surface Plasmon Resonance (SPR)-Biosensor based assay to search for potential GNE interactors in anion exchanged fractions of human skeletal muscle primary culture cell lysate. Analysis of the positive fractions by in vitro binding assay revealed alpha-actinin 1 as a potential interactor of GNE. The direct interaction of the two proteins was assessed in vitro by SPR-Biosensor based kinetics analysis and in a cellular environment by a co-immunoprecipitation assay in GNE overexpressing 293T cells. Furthermore, immunohistochemistry on stretched mouse muscle suggest that both GNE and alpha-actinin 1 localize to an overlapping but not identical region of the myofibrillar apparatus centered on the Z line. The interaction of GNE with alpha-actinin 1 might point to its involvement in alpha-actinin mediated processes. In addition these studies illustrate for the first time the expression of the non-muscle form of alpha-actinin, alpha-actinin 1, in mature skeletal muscle tissue, opening novel avenues for its specific function in the sarcomere. Although no significant difference could be detected in the binding kinetics of alpha-actinin 1 with either wild type or mutant GNE in our SPR biosensor based analysis, further investigation is needed to determine whether and how the interaction of GNE with alpha-actinin 1 in skeletal muscle is relevant to the putative muscle-specific function of alpha-actinin 1, and to the muscle-restricted pathology of HIBM

    Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    Get PDF
    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic variants that increase educational attainment have a positive effect on lifespan whereas increasing BMI negatively affects lifespan

    Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    Get PDF
    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value OBFC1indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes

    What makes a cyanobacterial bloom disappear? A review of the abiotic and biotic cyanobacterial bloom loss factors

    Get PDF
    Cyanobacterial blooms present substantial challenges to managers and threaten ecological and public health. Although the majority of cyanobacterial bloom research and management focuses on factors that control bloom initiation, duration, toxicity, and geographical extent, relatively little research focuses on the role of loss processes in blooms and how these processes are regulated. Here, we define a loss process in terms of population dynamics as any process that removes cells from a population, thereby decelerating or reducing the development and extent of blooms. We review abiotic (e.g., hydraulic flushing and oxidative stress/UV light) and biotic factors (e.g., allelopathic compounds, infections, grazing, and resting cells/programmed cell death) known to govern bloom loss. We found that the dominant loss processes depend on several system specific factors including cyanobacterial genera-specific traits, in situ physicochemical conditions, and the microbial, phytoplankton, and consumer community composition. We also address loss processes in the context of bloom management and discuss perspectives and challenges in predicting how a changing climate may directly and indirectly affect loss processes on blooms. A deeper understanding of bloom loss processes and their underlying mechanisms may help to mitigate the negative consequences of cyanobacterial blooms and improve current management strategies
    corecore