9,461 research outputs found

    Nuclear gas dynamics in Arp 220 - sub-kiloparsec scale atomic hydrogen disks

    Full text link
    We present new, high angular resolution (~0.22") MERLIN observations of neutral hydrogen (HI) absorption and 21-cm radio continuum emission across the central ~900 parsecs of the ultraluminous infrared galaxy, Arp220. Spatially resolved HI absorption is detected against the morphologically complex and extended 21-cm radio continuum emission, consistent with two counterrotating disks of neutral hydrogen, with a small bridge of gas connecting the two. We propose a merger model in which the two nuclei represent the galaxy cores which have survived the initial encounter and are now in the final stages of merging, similar to conclusions drawn from previous CO studies (Sakamoto, Scoville & Yun 1999). However, we suggest that instead of being coplanar with the main CO disk (in which the eastern nucleus is embedded), the western nucleus lies above it and, as suggested by bridge of HI connecting the two nuclei, will soon complete its final merger with the main disk. We suggest that the collection of radio supernovae (RSN) detected in VLBA studies in the more compact western nucleus represent the second burst of star formation associated with this final merger stage and that free-free absorption due to ionised gas in the bulge-like component can account for the observed RSN distribution. (Abridged)Comment: 26 pages including 8 figures and 1 table; accepted for publication in Ap

    Computing Inferences for Large-Scale Continuous-Time Markov Chains by Combining Lumping with Imprecision

    Get PDF
    If the state space of a homogeneous continuous-time Markov chain is too large, making inferences - here limited to determining marginal or limit expectations - becomes computationally infeasible. Fortunately, the state space of such a chain is usually too detailed for the inferences we are interested in, in the sense that a less detailed - smaller - state space suffices to unambiguously formalise the inference. However, in general this so-called lumped state space inhibits computing exact inferences because the corresponding dynamics are unknown and/or intractable to obtain. We address this issue by considering an imprecise continuous-time Markov chain. In this way, we are able to provide guaranteed lower and upper bounds for the inferences of interest, without suffering from the curse of dimensionality.Comment: 9th International Conference on Soft Methods in Probability and Statistics (SMPS 2018

    The Extended Methanol Maser Emission in W51

    Full text link
    The European VLBI Network (EVN) has been used to make phase referenced, wide-field (several arcminute) spectral line observations of the 6.7-GHz methanol maser emission towards W51. In the W51main region, the bulk of the methanol is offset from an UCHII region. This probably indicates the methanol emission arises at the interface of the expanding UCHII region and not from an edge-on circumstellar disc, as previously suggested. Near the W51 IRS2 region, the methanol emission is associated with a very compact, extremely embedded source supporting the hypothesis that methanol masers trace the earliest stages of massive star formation. As well as these two previously well studied sites of star formation, many previously unknown regions star formation are detected, demonstrating that methanol masers are powerful means of detection young massive stars.Comment: 5 pages, 3 figure

    An Elemental Assay of Very, Extremely, and Ultra Metal-Poor Stars

    Get PDF
    We present a high-resolution elemental-abundance analysis for a sample of 23 very metal-poor (VMP; [Fe/H] < -2.0) stars, 12 of which are extremely metal-poor (EMP; [Fe/H] < -3.0), and 4 of which are ultra metal-poor (UMP; [Fe/H] < -4.0). These stars were targeted to explore differences in the abundance ratios for elements that constrain the possible astrophysical sites of element production, including Li, C, N, O, the alpha-elements, the iron-peak elements, and a number of neutron-capture elements. This sample substantially increases the number of known carbon-enhanced metal-poor (CEMP) and nitrogen-enhanced metal-poor (NEMP) stars -- our program stars include eight that are considered "normal" metal-poor stars, six CEMP-no stars, five CEMP-s stars, two CEMP-r stars, and two CEMP-r/s stars. One of the CEMP-rr stars and one of the CEMP-r/s stars are possible NEMP stars. We detect lithium for three of the six CEMP-no stars, all of which are Li-depleted with respect to the Spite plateau. The majority of the CEMP stars have [C/N] > 0. The stars with [C/N] < 0 suggest a larger degree of mixing; the few CEMP-no stars that exhibit this signature are only found at [Fe/H] < -3.4, a metallicity below which we also find the CEMP-no stars with large enhancements in Na, Mg, and Al. We confirm the existence of two plateaus in the absolute carbon abundances of CEMP stars, as suggested by Spite et al. We also present evidence for a "floor" in the absolute Ba abundances of CEMP-no stars at A(Ba)~ -2.0.Comment: 20 pages, 16 figures, Accepted for publication in Ap

    Anisotropic elasticity in confocal studies of colloidal crystals

    Full text link
    We consider the theory of fluctuations of a colloidal solid observed in a confocal slice. For a cubic crystal we study the evolution of the projected elastic properties as a function of the anisotropy of the crystal using numerical methods based on the fast Fourier transform. In certain situations of high symmetry we find exact analytic results for the projected fluctuations.Comment: 6 pages, 7 figure

    The AIMSS Project - I. Bridging the star cluster-galaxy divide

    Get PDF
    We describe the structural and kinematic properties of the first compact stellar systems discovered by the Archive of Intermediate Mass Stellar Systems project. These spectroscopically confirmed objects have sizes (∌6 < Re [pc] < 500) and masses (∌2 × 106 < M∗/Mïżœ < 6 × 109) spanning the range of massive globular clusters, ultracompact dwarfs (UCDs) and compact elliptical galaxies (cEs), completely filling the gap between star clusters and galaxies. Several objects are close analogues to the prototypical cE, M32. These objects, which are more massive than previously discovered UCDs of the same size, further call into question the existence of a tight mass–size trend for compact stellar systems, while simultaneously strengthening the case for a universal ‘zone of avoidance’ for dynamically hot stellar systems in the mass–size plane. Overall, we argue that there are two classes of compact stellar systems (1) massive star clusters and (2) a population closely related to galaxies. Our data provide indications for a further division of the galaxy-type UCD/cE population into two groups, one population that we associate with objects formed by the stripping of nucleated dwarf galaxies, and a second population that formed through the stripping of bulged galaxies or are lower mass analogues of classical ellipticals. We find compact stellar systems around galaxies in low- to high-density environments, demonstrating that the physical processes responsible for forming them do not only operate in the densest clusters

    Magic wavelengths for the 5s−18s5s-18s transition in rubidium

    Get PDF
    Magic wavelengths, for which there is no differential ac Stark shift for the ground and excited state of the atom, allow trapping of excited Rydberg atoms without broadening the optical transition. This is an important tool for implementing quantum gates and other quantum information protocols with Rydberg atoms, and reliable theoretical methods to find such magic wavelengths are thus extremely useful. We use a high-precision all-order method to calculate magic wavelengths for the 5s−18s5s-18s transition of rubidium, and compare the calculation to experiment by measuring the light shift for atoms held in an optical dipole trap at a range of wavelengths near a calculated magic value

    A single low-energy, iron-poor supernova as the source of metals in the star SMSS J 031300.36-670839.3

    Get PDF
    The element abundance ratios of four low-mass stars with extremely low metallicities indicate that the gas out of which the stars formed was enriched in each case by at most a few, and potentially only one low-energy, supernova. Such supernovae yield large quantities of light elements such as carbon but very little iron. The dominance of low-energy supernovae is surprising, because it has been expected that the first stars were extremely massive, and that they disintegrated in pair-instability explosions that would rapidly enrich galaxies in iron. What has remained unclear is the yield of iron from the first supernovae, because hitherto no star is unambiguously interpreted as encapsulating the yield of a single supernova. Here we report the optical spectrum of SMSS J031300.36- 670839.3, which shows no evidence of iron (with an upper limit of 10^-7.1 times solar abundance). Based on a comparison of its abundance pattern with those of models, we conclude that the star was seeded with material from a single supernova with an original mass of ~60 Mo (and that the supernova left behind a black hole). Taken together with the previously mentioned low-metallicity stars, we conclude that low-energy supernovae were common in the early Universe, and that such supernovae yield light element enrichment with insignificant iron. Reduced stellar feedback both chemically and mechanically from low-energy supernovae would have enabled first-generation stars to form over an extended period. We speculate that such stars may perhaps have had an important role in the epoch of cosmic reionization and the chemical evolution of early galaxies.Comment: 28 pages, 6 figures, Natur

    Interferometric Observations of the Nuclear Region of Arp220 at Submillimeter Wavelengths

    Get PDF
    We report the first submillimeter interferometric observations of an ultraluminous infrared galaxy. We observed Arp220 in the CO J=3-2 line and 342GHz continuum with the single baseline CSO-JCMT interferometer consisting of the Caltech Submillimeter Observatory (CSO) and the James Clerk Maxwell Telescope (JCMT). Models were fit to the measured visibilities to constrain the structure of the source. The morphologies of the CO J=3-2 line and 342GHz continuum emission are similar to those seen in published maps at 230 and 110GHz. We clearly detect a binary source separated by about 1 arcsec in the east-west direction in the 342GHz continuum. The CO J=3-2 visibility amplitudes, however, indicate a more complicated structure, with evidence for a compact binary at some velocities and rather more extended structure at others. Less than 30% of the total CO J=3-2 emission is detected by the interferometer, which implies the presence of significant quantities of extended gas. We also obtained single-dish CO J=2-1, CO J=3-2 and HCN J=4-3 spectra. The HCN J=4-3 spectrum, unlike the CO spectra, is dominated by a single redshifted peak. The HCN J=4-3/CO J=3-2, HCN J=4-3/HCN J=1-0 and CO J=3-2/2-1 line ratios are larger in the redshifted (eastern) source, which suggests that the two sources may have different physical conditions. This result might be explained by the presence of an intense starburst that has begun to deplete or disperse the densest gas in the western source, while the eastern source harbors undispersed high density gas.Comment: 17 pages, 9 figures, 4 Tables. accepted by Ap
    • 

    corecore