15 research outputs found

    Laboratory Colonization by \u3ci\u3eDirofilaria immitis\u3c/i\u3e Alters the Microbiome of Female \u3ci\u3eAedes aegypti\u3c/i\u3e mosquitoes

    Get PDF
    Background The ability of blood-feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito-transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti. Methods In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female Ae. aegypti. Metagenomic analysis of the V3–V4 variable region of the microbial 16S RNA gene was used for identification of the microbial differences down to species level. Results We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis-infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larvae. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacterial genera and phyla between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacterial species when commonly identified bacteria were compared. Conclusions To the best of our knowledge, this is the first study to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of Ae. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    A Realistic Roadmap to Formation Flying Space Interferometry

    Get PDF
    The ultimate astronomical observatory would be a formation flying space interferometer, combining sensitivity and stability with high angular resolution. The smallSat revolution offers a new and maturing prototyping platform for space interferometry and we put forward a realistic plan for achieving first stellar fringes in space by 2030

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Attitudes towards vaccines and intention to vaccinate against COVID-19: a cross-sectional analysis - implications for public health communications in Australia

    Get PDF
    Objective To examine SARS-CoV-2 vaccine confidence, attitudes and intentions in Australian adults as part of the iCARE Study. Design and setting Cross-sectional online survey conducted when free COVID-19 vaccinations first became available in Australia in February 2021. Participants Total of 1166 Australians from general population aged 18-90 years (mean 52, SD of 19). Main outcome measures Primary outcome: responses to question € If a vaccine for COVID-19 were available today, what is the likelihood that you would get vaccinated?'. Secondary outcome: analyses of putative drivers of uptake, including vaccine confidence, socioeconomic status and sources of trust, derived from multiple survey questions. Results Seventy-eight per cent reported being likely to receive a SARS-CoV-2 vaccine. Higher SARS-CoV-2 vaccine intentions were associated with: increasing age (OR: 2.01 (95% CI 1.77 to 2.77)), being male (1.37 (95% CI 1.08 to 1.72)), residing in least disadvantaged area quintile (2.27 (95% CI 1.53 to 3.37)) and a self-perceived high risk of getting COVID-19 (1.52 (95% CI 1.08 to 2.14)). However, 72% did not believe they were at a high risk of getting COVID-19. Findings regarding vaccines in general were similar except there were no sex differences. For both the SARS-CoV-2 vaccine and vaccines in general, there were no differences in intentions to vaccinate as a function of education level, perceived income level and rurality. Knowing that the vaccine is safe and effective and that getting vaccinated will protect others, trusting the company that made it and vaccination recommended by a doctor were reported to influence a large proportion of the study cohort to uptake the SARS-CoV-2 vaccine. Seventy-eight per cent reported the intent to continue engaging in virus-protecting behaviours (mask wearing, social distancing, etc) postvaccine. Conclusions Most Australians are likely to receive a SARS-CoV-2 vaccine. Key influencing factors identified (eg, knowing vaccine is safe and effective, and doctor's recommendation to get vaccinated) can inform public health messaging to enhance vaccination rates

    Measuring Electoral Democracy with V-Dem Data: Introducing a New Polyarchy Index

    No full text

    Internet Stocks: Value-Drivers, Market Irrationality, and Mispricing an Overview of the Emerging Empirical Research Evidence

    No full text
    corecore