927 research outputs found
The physiological and behavioral responses of steers to gaseous ammonia in simulated long distance transport by ship.
Ammonia (NH3) can accumulate in high density cattle accommodation during live export shipments and could potentially threaten the animals' health and welfare. The effects of 4 NH3 concentrations, control ( 0.05) on hematological parameters or body weight. Twenty-eight days after exposure to NH3, the steers' pulmonary macrophage activity and neutrophil levels had returned to normal. It was concluded that ammonia concentrations of 30 and 45 ppm induced temporary inflammatory responses which indicate an adverse effect on the welfare of steers
Study of the dependence of 198Au half-life on source geometry
We report the results of an experiment to determine whether the half-life of
\Au{198} depends on the shape of the source. This study was motivated by recent
suggestions that nuclear decay rates may be affected by solar activity, perhaps
arising from solar neutrinos. If this were the case then the -decay
rates, or half-lives, of a thin foil sample and a spherical sample of gold of
the same mass and activity could be different. We find for \Au{198},
, where
is the mean half-life. The maximum neutrino flux at the sample in our
experiments was several times greater than the flux of solar neutrinos at the
surface of the Earth. We show that this increase in flux leads to a significant
improvement in the limits that can be inferred on a possible solar contribution
to nuclear decays.Comment: 5 pages, 1 figur
Searches for solar-influenced radioactive decay anomalies using Spacecraft RTGs
Experiments showing a seasonal variation of the nuclear decay rates of a
number of different nuclei, and decay anomalies apparently related to solar
flares and solar rotation, have suggested that the Sun may somehow be
influencing nuclear decay processes. Recently, Cooper searched for such an
effect in Pu nuclei contained in the radioisotope thermoelectric
generators (RTGs) on board the Cassini spacecraft. In this paper we modify and
extend Cooper's analysis to obtain constraints on anomalous decays of
Pu over a wider range of models, but these limits cannot be applied to
other nuclei if the anomaly is composition-dependent. We also show that it may
require very high sensitivity for terrestrial experiments to discriminate among
some models if such a decay anomaly exists, motivating the consideration of
future spacecraft experiments which would require less precision.Comment: 8 pages, 4 figures (to appear in Astroparticle Physics
Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems
The net energy implications of the energy transition have so far been analysed at best at the final energy stage. Here we argue that expanding the analysis to the useful stage is crucial. We estimate fossil fuelsʼ useful-stage energy returns on investment (EROIs) over the period 1971–2020, globally and nationally, and disaggregate EROIs by end use. We find that fossil fuelsʼ useful-stage EROIs (~3.5:1) are considerably lower than at the final stage (~8.5:1), due to low final-to-useful efficiencies. Further, we estimate the final-stage EROI for which electricity-yielding renewable energy would deliver the same net useful energy as fossil fuels (EROI equivalent) to be approximately 4.6:1. The EROIs of electricity-yielding renewable energy systems, based on published estimations, are found to be higher than the determined EROI equivalent, even considering the effects of intermittency under a range of energy transition scenarios. Results suggest that the energy transition may happen without a decline in net useful energy, countering the view that renewable energy systems cannot replace fossil fuels without incurring a substantial energy penalty
Genetic characterization of cassava (Manihot esculenta Crantz) genotypes using agro-morphological and single nucleotide polymorphism markers
Open Access Article; Published online: 23 Dec 2019Dearth of information on extent of genetic variability in cassava limits the genetic improvement of cassava genotypes in Sierra Leone. The aim of this study was to assess the genetic diversity and relationships within 102 cassava genotypes using agro-morphological and single nucleotide polymorphism markers. Morphological classification based on qualitative traits categorized the germplasm into five different groups, whereas the quantitative trait set had four groups. The SNP markers classified the germplasm into three main cluster groups. A total of seven principal components (PCs) in the qualitative and four PCs in the quantitative trait sets accounted for 79.03% and 72.30% of the total genetic variation, respectively. Significant and positive correlations were observed between average yield per plant and harvest index (r = 0.76***), number of storage roots per plant and harvest index (r = 0.33*), height at first branching and harvest index (0.26*), number of storage roots per plant and average yield per plant (r = 0.58*), height at first branching and average yield per plant (r = 0.24*), length of leaf lobe and petiole length (r = 0.38*), number of leaf lobe and petiole length (r = 0.31*), width of leaf lobe and length of leaf lobe (r = 0.36*), number of leaf lobe and length of leaf lobe (r = 0.43*), starch content and dry matter content (r = 0.99***), number of leaf lobe and root dry matter (r = 0.30*), number of leaf lobe and starch content (r = 0.28*), and height at first branching and plant height (r = 0.45**). Findings are useful for conservation, management, short term recommendation for release and genetic improvement of the crop
Meeting the costs of decarbonising industry – The potential effects on prices and competitiveness (a case study of the UK)
Industry produces a third of global greenhouse gas emissions and needs to be decarbonised as countries strive for net zero. But how might the costs of this be met and what effect might the options have on businesses and consumers? Using the UK as a case study, we investigate the relative effect on prices and profit margins of three idealised illustrative scenarios for distributing the costs of decarbonising industry: (1) absorbing them, (2) passing them on to consumers, and (3) sharing them along the relevant value chains. To do this, we combine direct process cost projections from a detailed industry pathway model (covering 115 sector-process combinations and 96 unique low-carbon technologies) with techniques exploiting multi-regional input-output analysis. Industrial decarbonisation consistent with net-zero goals can be achieved with an aggregate increase in prices as low as 0.8%, and minimal impact on equality. However, the impact on some industries is more pronounced; while costs might be beneficially shared between sectors to some extent, some will find this more challenging. The findings are relevant to industrial decarbonisation policies and the support they need to provide, the effects that industrial decarbonisation might have on equality, and its potential effect on international competition
Modeling of complex oxide materials from the first principles: systematic applications to vanadates RVO3 with distorted perovskite structure
"Realistic modeling" is a new direction of electronic structure calculations,
where the main emphasis is made on the construction of some effective
low-energy model entirely within a first-principle framework. Ideally, it is a
model in form, but with all the parameters derived rigorously, on the basis of
first-principles electronic structure calculations. The method is especially
suit for transition-metal oxides and other strongly correlated systems, whose
electronic and magnetic properties are predetermined by the behavior of some
limited number of states located near the Fermi level. After reviewing general
ideas of realistic modeling, we will illustrate abilities of this approach on
the wide series of vanadates RVO3 (R= La, Ce, Pr, Nd, Sm, Gd, Tb, Yb, and Y)
with distorted perovskite structure. Particular attention will be paid to
computational tools, which can be used for microscopic analysis of different
spin and orbital states in the partially filled t2g-band. We will explicitly
show how the lifting of the orbital degeneracy by the monoclinic distortion
stabilizes C-type antiferromagnetic (AFM) state, which can be further
transformed to the G-type AFM state by changing the crystal distortion from
monoclinic to orthorhombic one. Two microscopic mechanisms of such a
stabilization, associated with the one-electron crystal field and electron
correlation interactions, are discussed. The flexibility of the orbital degrees
of freedom is analyzed in terms of the magnetic-state dependence of interatomic
magnetic interactions.Comment: 23 pages, 13 figure
Charge conservation and time-varying speed of light
It has been recently claimed that cosmologies with time dependent speed of
light might solve some of the problems of the standard cosmological scenario,
as well as inflationary scenarios. In this letter we show that most of these
models, when analyzed in a consistent way, lead to large violations of charge
conservation. Thus, they are severly constrained by experiment, including those
where is a power of the scale factor and those whose source term is the
trace of the energy-momentum tensor. In addition, early Universe scenarios with
a sudden change of related to baryogenesis are discarded.Comment: 4 page
A study of the centrally produced baryon-antibaryon systems in pp interactions at 450 GeV/c
A study of the centrally produced ppbar, ppbarpi, ppbarpipi and lambda lambda
channels has been performed in pp collisions using an incident beam momentum of
450 GeV/c. No significant new structures are observed in the mass spectra,
however, important new information on the production dynamics is obtained. A
systematic study of the production properties of these systems has been
performed and it is found that these systems are not produced dominantly by
double Pomeron exchange.Comment: 13 pages, Latex, 4 Figure
- …