14,005 research outputs found

    Electronic Structure of Hyperkagome Na4Ir3O8

    Full text link
    We investigate the electronic structure of the frustrated magnet Na4Ir3O8 using density functional theory. Due to strong spin-orbit coupling, the hyperkagome lattice is characterized by a half-filled complex of states, making it a cubic iridium analogue of the high temperature superconducting cuprates. The implications of our results for this unique material are discussed.Comment: expanded discussion with extra figures - 6 pages, 10 figure

    Spin Hamiltonian of Hyperkagome Na4Ir3O8

    Full text link
    We derive the spin Hamiltonian for the quantum spin liquid Na4Ir3O8, and then estimate the direct and superexchange contributions between near neighbor iridium ions using a tight binding parametrization of the electronic structure. We find a magnitude of the exchange interaction comparable to experiment for a reasonable value of the on-site Coulomb repulsion. For one of the two tight binding parametrizations we have studied, the direct exchange term, which is isotropic, dominates the total exchange. This provides support for those theories proposed to describe this novel quantum spin liquid that assume an isotropic Heisenberg model.Comment: 9 pages, 4 figure

    Why Limits on Contributions to Super PACs Should Survive \u3ci\u3eCitizens United\u3c/i\u3e

    Get PDF
    Soon after the Supreme Court decided Citizens United v. FEC, the D.C. Circuit held all limits on contributions to super PACs unconstitutional. Its decision in SpeechNow.org v. FEC created a regime in which contributions to candidates are limited but in which contributions to less responsible groups urging votes for these candidates are unbounded. No legislator voted for this system of campaign financing, and the judgment that the Constitution requires it is astonishing. Forty-two years ago, Buckley v. Valeo held that Congress could limit contributions to candidates because these contributions are corrupting or create an appearance of corruption. According to the D.C. Circuit, however, Congress may not prohibit multi-million-dollar contributions to satellite campaigns because these contributions do not create even an appearance of corruption. The D.C. Circuit said that a single sentence of the Citizens United opinion compelled its result. It wrote, “In light of the Court’s holding as a matter of law that independent expenditures do not corrupt or create the appearance of corruption, contributions to groups that make only independent expenditures also cannot corrupt or create the appearance of corruption.” This Article contends that, contrary to the D.C. Circuit’s reasoning, contributions to super PACs can corrupt even when expenditures by these groups do not. Moreover, the statement that the D.C. Circuit took as its premise was dictum, and the Supreme Court did not mean this statement to be taken in the way the D.C. Circuit took it. The Supreme Court’s long-standing distinction between contribution limits and expenditure limits does not rest on the untenable proposition thatcandidates cannot be corrupted by funds paid to and spent on their behalf by others. Rather, Buckley noted five differences between contributions and expenditures. A review of these differences makes clear that contributions to super PACs cannot be distinguished from the contributions to candidates whose limitation the Court upheld. The ultimate question posed by Buckley is whether super PAC contributions create a sufficient appearance of corruption to justify their limitation. This Article reviews the statements of candidates of both parties in the 2016 presidential election, the views of Washington insiders, and public opinion polls. It shows that SpeechNow has sharpened class divisions and helped to tear America apart. The Justice Department did not seek Supreme Court review of the SpeechNow decision. In a statement that belongs on a historic list of wrong predictions, Attorney General Holder explained that the decision would “affect only a small subset of federally regulated contributions.” Although eight years have passed since SpeechNow, the Supreme Court has not decided whether the Constitution guarantees the right to give unlimited funds to super PACs. A final section of this Article describes the efforts of members of Congress and candidates for Congress to bring that question before the Court. The Federal Election Commission is opposing their efforts, offering arguments that, if accepted, would be likely to keep the Court from ever deciding the issue

    Population III star formation in a Lambda CDM universe, II: Effects of a photodissociating background

    Full text link
    We examine aspects of primordial star formation in the presence of a molecular hydrogen-dissociating ultraviolet background. We compare a set of AMR hydrodynamic cosmological simulations using a single cosmological realization but with a range of ultraviolet background strengths in the Lyman-Werner band. This allows us to study the effects of Lyman-Werner radiation on suppressing H2 cooling at low densities as well as the high-density evolution of the collapsing core in a self-consistent cosmological framework. We find that the addition of a photodissociating background results in a delay of the collapse of high density gas at the center of the most massive halo in the simulation and, as a result, an increase in the virial mass of this halo at the onset of baryon collapse. We find that, contrary to previous results, Population III star formation is not suppressed for J210.1_{21} \geq 0.1, but occurs even with backgrounds as high as J21=1_{21} = 1. We find that H2 cooling leads to collapse despite the depressed core molecular hydrogen fractions due to the elevated H2 cooling rates at T=25×103T=2-5 \times 10^3 K. We observe a relationship between the strength of the photodissociating background and the rate of accretion onto the evolving protostellar cloud core, with higher LW background fluxes resulting in higher accretion rates. Finally, we find that the collapsing halo cores in our simulations do not fragment at densities below n1010n \sim 10^{10} cm3^{-3} regardless of the strength of the LW background, suggesting that Population III stars forming in halos with Tvir104_{vir} \sim 10^4 K may still form in isolation.Comment: 46 pages, 14 figures (9 color). Accepted by the Astrophysical Journal, some minor revision

    Late Pop III Star Formation During the Epoch of Reionization: Results from the Renaissance Simulations

    Full text link
    We present results on the formation of Pop III stars at redshift 7.6 from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich radiation transport hydrodynamics cosmological adaptive-mesh refinement simulations of high redshift galaxy formation performed on the Blue Waters supercomputer. In a survey volume of about 220 comoving Mpc3^3, we found 14 Pop III galaxies with recent star formation. The surprisingly late formation of Pop III stars is possible due to two factors: (i) the metal enrichment process is local and slow, leaving plenty of pristine gas to exist in the vast volume; and (ii) strong Lyman-Werner radiation from vigorous metal-enriched star formation in early galaxies suppresses Pop III formation in ("not so") small primordial halos with mass less than \sim 3 ×\times 107^7 M_\odot. We quantify the properties of these Pop III galaxies and their Pop III star formation environments. We look for analogues to the recently discovered luminous Ly α\alpha emitter CR7 (Sobral et al. 2015), which has been interpreted as a Pop III star cluster within or near a metal-enriched star forming galaxy. We find and discuss a system similar to this in some respects, however the Pop III star cluster is far less massive and luminous than CR7 is inferred to be.Comment: 8 pages, 4 figures, 3 tables. Accepted by Ap

    Probing The Ultraviolet Luminosity Function of the Earliest Galaxies with the Renaissance Simulations

    Full text link
    In this paper, we present the first results from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich AMR calculations of high redshift galaxy formation performed on the Blue Waters supercomputer. These simulations contain hundreds of well-resolved galaxies at z258z \sim 25-8, and make several novel, testable predictions. Most critically, we show that the ultraviolet luminosity function of our simulated galaxies is consistent with observations of high-z galaxy populations at the bright end of the luminosity function (M160017_{1600} \leq -17), but at lower luminosities is essentially flat rather than rising steeply, as has been inferred by Schechter function fits to high-z observations, and has a clearly-defined lower limit in UV luminosity. This behavior of the luminosity function is due to two factors: (i) the strong dependence of the star formation rate on halo virial mass in our simulated galaxy population, with lower-mass halos having systematically lower star formation rates and thus lower UV luminosities; and (ii) the fact that halos with virial masses below 2×108\simeq 2 \times 10^8 M_\odot do not universally contain stars, with the fraction of halos containing stars dropping to zero at 7×106\simeq 7 \times 10^6 M_\odot. Finally, we show that the brightest of our simulated galaxies may be visible to current and future ultra-deep space-based surveys, particularly if lensed regions are chosen for observation.Comment: 7 pages, 4 figures, accepted by The Astrophysical Journal Letter

    Qualitative and quantitative analysis of mixtures of compounds containing both hydrogen and deuterium

    Get PDF
    Method allows qualitative and quantitative analysis of mixtures of partially deuterated compounds. Nuclear magnetic resonance spectroscopy determines location and amount of deuterium in organic compounds but not fully deuterated compounds. Mass spectroscopy can detect fully deuterated species but not the location

    Nonlinear response of a blade-stiffened graphite-epoxy panel with a discontinuous stiffener: Work in progress

    Get PDF
    The problem of calculating detailed stress distributions around discontinuities in buckled, composite structural components for use with the various analytical failure prediction techniques has not been thoroughly explored. The purpose here is the application of computational methods to the detailed stress analysis problem which is the focus of this session of the workshop. One approach to uncovering the difficulties of this type of analysis and to providing specific directions for future research in this area is a direct attack on the problem using currently available analysis tools. A candidate problem has been selected and experiences from calculating its structural response are described

    Scaling Relations for Galaxies Prior to Reionization

    Full text link
    The first galaxies in the Universe are the building blocks of all observed galaxies. We present scaling relations for galaxies forming at redshifts z15z \ge 15 when reionization is just beginning. We utilize the ``Rarepeak' cosmological radiation hydrodynamics simulation that captures the complete star formation history in over 3,300 galaxies, starting with massive Population III stars that form in dark matter halos as small as ~106M10^6 M_\odot. We make various correlations between the bulk halo quantities, such as virial, gas, and stellar masses and metallicities and their respective accretion rates, quantifying a variety of properties of the first galaxies up to halo masses of 109M10^9 M_\odot. Galaxy formation is not solely relegated to atomic cooling halos with virial temperatures greater than 10410^4 K, where we find a dichotomy in galaxy properties between halos above and below this critical mass scale. Halos below the atomic cooling limit have a stellar mass -- halo mass relationship logM3.5+1.3log(Mvir/107M)\log M_\star \simeq 3.5 + 1.3\log(M_{\rm vir} / 10^7 M_\odot). We find a non-monotonic relationship between metallicity and halo mass for the smallest galaxies. Their initial star formation events enrich the interstellar medium and subsequent star formation to a median of 102Z10^{-2} Z_\odot and 101.5Z10^{-1.5} Z_\odot, respectively, in halos of total mass 107M10^7 M_\odot that is then diluted by metal-poor inflows, well beyond Population III pre-enrichment levels of 103.5Z10^{-3.5} Z_\odot. The scaling relations presented here can be employed in models of reionization, galaxy formation and chemical evolution in order to consider these galaxies forming prior to reionization.Comment: 10 pages, 10 figures. Accepted to Ap
    corecore