11 research outputs found
Fungal effector SIB1 of Colletotrichum orbiculare has unique structural features and can suppress plant immunity in Nicotiana benthamiana
Fungal plant pathogens secrete virulence-related proteins, called effectors, to establish host infection, however, the details are not fully understood yet. Functional screening of effector candidates using Agrobacterium-mediated transient expression assay in Nicotiana benthamiana identified two virulence-related effectors, named SIB1 and SIB2 (Suppression of Immunity in N. benthamiana), of an anthracnose fungus Colletotrichum orbiculare, which infects both cucurbits and N. benthamiana. The Agrobacterium-mediated transient expression of SIB1 or SIB2 increased the susceptibility of N. benthamiana to C. orbiculare, which suggested these effectors can suppress immune responses in N. benthamiana. The presence of SIB1 and SIB2 homologs was found to be limited to the genus Colletotrichum. SIB1 suppressed both (i) the generation of reactive oxygen species (ROS) triggered by two different pathogen-associated molecular patterns (PAMPs), chitin and flg22, and (ii) the cell death response triggered by the Phytophthora infestans INF1 elicitin in N. benthamiana. We determined the NMR-based structure of SIB1 to obtain its structural insights. The three-dimensional structure of SIB1 comprises five β-strands, each containing three disulfide bonds. The overall conformation was found to be a cylindrical shape, such as the well-known antiparallel β-barrel structure. However, the β-strands were found to display a unique topology, one pair of these β-strands formed a parallel β-sheet. These results suggest that the effector SIB1 present in Colletotrichum fungi has unique structural features and can suppress PAMP-triggered immunity (PTI) in N. benthamiana
Utilization of Liver Microsomes to Estimate Hepatic Intrinsic Clearance of Monoamine Oxidase Substrate Drugs in Humans
Purpose: Monoamine oxidases (MAOs) are non-CYP enzymes that contribute to systemic elimination of therapeutic agents, and localized on mitochondrial membranes. The aim of the present study was to validate quantitative estimation of metabolic clearance of MAO substrate drugs using human liver microsomes (HLMs). Methods: Three MAO substrate drugs, sumatriptan, rizatriptan and phenylephrine, as well as four CYP substrates were selected, and their disappearance during incubation with HLMs or mitochondria (HLMt) was measured. Metabolic clearance (CL) was then calculated from the disappearance curve. Results: CL obtained in HLMs for sumatriptan and a typical MAO substrate serotonin was correlated with that obtained in HLMt among ten human individual livers. Hepatic intrinsic clearance (CLint,vitro) estimated from CL in HLMs was 14–20 and 2–5 times lower than in vivo hepatic intrinsic clearance (CLint,vivo) obtained from literature for MAO and CYP substrates, respectively. Utilization of HLMs for quantitatively assessing metabolic clearance of MAO substrates was further validated by proteomics approach which has revealed that numerous proteins localized on inner and outer membranes of mitochondria were detected in both HLMs and HLMt. Conclusion: CLint,vitro values of MAO substrate drugs can be quantitatively estimated with HLMs and could be used for semi-quantitative prediction of CLint,vivo values. © 2017 Springer Science+Business Media New YorkEmbargo Period 12 month
C9orf72由来のプロリン : アルギニンポリペプチドは細胞骨格とメカニカルストレス応答を制御する
Proline:arginine (PR) poly-dipeptides from the GGGGCC repeat expansion in C9orf72 have cytotoxicity and bind intermediate filaments (IFs). However, it remains unknown how PR poly-dipeptides affect cytoskeletal organization and focal adhesion (FA) formation. Here, we show that changes to the cytoskeleton and FA by PR poly-dipeptides result in the alteration of cell stiffness and mechanical stress response. PR poly-dipeptides increased the junctions and branches of the IF network and increased cell stiffness. They also changed the distribution of actin filaments and increased the size of FA and intracellular calcium concentration. PR poly-dipeptides or an inhibitor of IF organization prevented cell detachment. Furthermore, PR poly-dipeptides induced upregulation of mechanical stress response factors and led to a maladaptive response to cyclic stretch. These results suggest that the effects of PR poly-dipeptides on mechanical properties and mechanical stress response may serve as a pathogenesis of C9orf72-related neurodegeneration.博士(医学)・甲第846号・令和4年9月28日Copyright © 2022 Shiota, Nagata, Kikuchi, Nanaura, Matsubayashi, Nakanishi,Kobashigawa, Isozumi, Kiriyama, Nagayama, Sugie, Yamashiro and Mori. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms
Phosphorylation-Induced Conformational Switching of CPI-17 Produces a Potent Myosin Phosphatase Inhibitor
Phosphorylation of endogenous inhibitor proteins for type-1 Ser/Thr phosphatase (PP1) provides a mechanism for reciprocal coordination of kinase and phosphatase activities. A myosin phosphatase inhibitor protein CPI-17 at Thr38 is phosphorylated through G-protein-mediated signals, resulting in a >1000-fold increase in inhibitory potency. We show here the solution NMR structure of phospho-T38-CPI-17 with r.m.s.d of 0.36±0.06 A for the backbone secondary structure, which reveals how phosphorylation triggers a conformational change and exposes an inhibitory surface. This active conformation is stabilized by the formation of a hydrophobic core of intercalated side chains, which is not formed in a phospho-mimetic D38 form of CPI-17. Thus, the profound increase in potency of CPI-17 arises from phosphorylation, conformational change, and hydrophobic stabilization of a rigid structure that poses the phosphorylated residue on the protein surface and restricts its hydrolysis by myosin phosphatase. Our results provide structural insights into transduction of kinase signals by PP1 inhibitor proteins
Hypervalent Nonbonded Interactions of a Divalent Sulfur Atom. Implications in Protein Architecture and the Functions
In organic molecules a divalent sulfur atom sometimes adopts weak coordination to a proximate heteroatom (X). Such hypervalent nonbonded S···X interactions can control the molecular structure and chemical reactivity of organic molecules, as well as their assembly and packing in the solid state. In the last decade, similar hypervalent interactions have been demonstrated by statistical database analysis to be present in protein structures. In this review, weak interactions between a divalent sulfur atom and an oxygen or nitrogen atom in proteins are highlighted with several examples. S···O interactions in proteins showed obviously different structural features from those in organic molecules (<em>i.e.</em>, π<sub>O</sub> → σ<sub>S</sub>*<em> versus</em> n<sub>O</sub> → σ<sub>S</sub>* directionality). The difference was ascribed to the HOMO of the amide group, which expands in the vertical direction (π<sub>O</sub>) rather than in the plane (n<sub>O</sub>). S···X interactions in four model proteins, phospholipase A<sub>2</sub> (PLA<sub>2</sub>), ribonuclease A (RNase A), insulin, and lysozyme, have also been analyzed. The results suggested that S···X interactions would be important factors that control not only the three-dimensional structure of proteins but also their functions to some extent. Thus, S···X interactions will be useful tools for protein engineering and the ligand design