65 research outputs found

    Molecular Dynamics Simulation of Chemical Vapor Deposition of Amorphous Carbon: Dependence on H/C Ratio of Source Gas

    Full text link
    By molecular dynamics simulation, the chemical vapor deposition of amorphous carbon onto graphite and diamond surfaces was studied. In particular, we investigated the effect of source H/C ratio, which is the ratio of the number of hydrogen atoms to the number of carbon atoms in a source gas, on the deposition process. In the present simulation, the following two source gas conditions were tested: one was that the source gas was injected as isolated carbon and hydrogen atoms, and the other was that the source gas was injected as hydrocarbon molecules. Under the former condition, we found that as the source H/C ratio increases, the deposition rate of carbon atoms decreases exponentially. This exponential decrease in the deposition rate with increasing source H/C ratio agrees with experimental data. However, under the latter molecular source condition, the deposition rate did not decrease exponentially because of a chemical reaction peculiar to the type of hydrocarbon in the source gas.Comment: accepted by Jpn. J. Appl. Phys. (2008

    Current status of Japanese detectors

    Full text link
    Current status of TAMA and CLIO detectors in Japan is reported in this article. These two interferometric gravitational-wave detectors are being developed for the large cryogenic gravitational wave telescope (LCGT) which is a future plan for detecting gravitational wave signals at least once per year. TAMA300 is being upgraded to improve the sensitivity in low frequency region after the last observation experiment in 2004. To reduce the seismic noises, we are installing new seismic isolation system, which is called TAMA Seismic Attenuation System, for the four test masses. We confirmed stable mass locks of a cavity and improvements of length and angular fluctuations by using two SASs. We are currently optimizing the performance of the third and fourth SASs. We continue TAMA300 operation and R&D studies for LCGT. Next data taking in the summer of 2007 is planned. CLIO is a 100-m baseline length prototype detector for LCGT to investigate interferometer performance in cryogenic condition. The key features of CLIO are that it locates Kamioka underground site for low seismic noise level, and adopts cryogenic Sapphire mirrors for low thermal noise level. The first operation of the cryogenic interferometer was successfully demonstrated in February of 2006. Current sensitivity at room temperature is close to the target sensitivity within a factor of 4. Several observation experiments at room temperature have been done. Once the displacement noise reaches at thermal noise level of room temperature, its improvement by cooling test mass mirrors should be demonstrated.Comment: 6 pages, 5 figures, Proceedings of GWDAW-1

    Development of impurity seeding and radiation enhancement in the helical divertor of LHD

    Get PDF
    Impurity seeding to reduce the divertor heat load was conducted in the large helical device (LHD) using neon (Ne) and krypton (Kr) puffing. Radiation enhancement and reduction of the divertor heat load were observed. In the LHD, the ratio between the total radiated power and the heating power, f rad = Prad/Pheating, is limited up to around 30% in hydrogen plasmas even for high density plasma just below the radiative collapse (ne, bar  >  1   ×   1020 m−3), where ne, bar is the line averaged density. With Ne seeding, the ratio could be raised to 52% at ne, bar ~ 1.3   ×   1019 m−3, albeit with a slight reduction in confinement. f rad ~ 30% could be sustained for 3.4 s using multi-pulse Ne seeding at ne, bar ~ 4   ×   1019 m−3. The localized supplemental radiation was observed along the helical divertor X-points (HDXs) which is similar to the estimated structure by the EMC3-EIRENE code. Kr seeding was also conducted at ne, bar ~ 3.1   ×   1019 m−3. f rad ~ 25% was obtained without a significant change in stored energy. The radiation enhancement had a slower time constant. The supplemental radiation area of the Kr seeded plasma moved from the HDXs to the core plasma. Highly charged states of Kr ions are considered to be the dominant radiators from the plasma core region

    Nickel-catalyzed carbonization of wood for coproduction of functional carbon and fluid fuels I : production of crystallized mesoporous carbon

    Get PDF
    Japanese larch wood loaded with nickel (1%–4%) alone or with nickel and calcium (0.25%–1.5%) was carbonized at 800°–900°C for 0–120min with a heating rate of 5°–20°C min−1 in a helium flow of 5.8−46.4 ml STP cm−2 min−1 to examine the influence of these variables on the crystallization of carbon (the formation of T component) and the development of mesoporosity. From the obtained results, reaction conditions suitable for effective production of carbon with the dual functions of adequate electroconductivity and adsorption capacity in liquid phase were established, thereby explaining the factors that govern the process. It was also confirmed that mesopore having a diameter of about 4 nm was selectively produced at the cost of specific (BET) surface area in parallel with the formation of T component. This result provided good insight into how the simultaneous dual function could be realized

    The effect of mountaineering on the association between blood pressure and physical activity: A new multi‐sensor ambulatory blood‐pressure monitoring device. The Mount Fuji Study

    No full text
    Abstract It has not been fully investigated whether the response of blood pressure (BP) to activity at high altitudes differs from that at low altitudes or how temperature is involved in these differences. The author compared BP response to accelerometer measurements during mountaineering and daily living. In 15 healthy people (mean age 33 ± 6 years), a new multi‐sensor ambulatory BP monitoring (ABPM) device equipped with barometer, thermometer, and accelerometer was used to measure BP responses to activity during a trip to Mt. Fuji and during daily living. Associations between physical activity (log‐transformed 5‐min average values of accelerometer just before each ambulatory BP) and the corresponding BP were obtained from 843 and 676 readings during the Mt. Fuji trip and daily living, respectively. All ambulatory systolic BP (SBP) parameters were significantly higher during the Mt. Fuji trip than during daily living (all p < .01). There were significant positive correlations between physical activity and corresponding BPs in both mountaineering and daily living (all p < .01), and there was an interaction between BPs and physical activity according to the two conditions (p < .01). On Mt. Fuji, multivariate regression analysis showed increased physical activity and lower temperature were associated with increased 24‐h SBP and diastolic BP (DBP) (all p < .05). The goodness‐of‐fit values of the association between activity and 24‐h SBP or DBP were improved by adding temperature to the model of both 24‐h SBP and DBP. However, these associations were not found in the daily living model. BP response to activity was more pronounced during mountaineering than daily living
    corecore