84 research outputs found

    Photospheric Abundances of Volatile and Refractory Elements in Planet-Harboring Stars

    Get PDF
    By using the high-dispersion spectra of 14 bright planet-harboring stars (along with 4 reference stars) observed with the new coude echelle spectrograph at Okayama Astrophysical Observatory, we investigated the abundances of volatile elements (C, N, O, S, Zn; low condensation temperature Tc) in order to examine whether these show any significant difference compared to the abundances of other refractory elements (Si, Ti, V, Fe, Co, Ni; high Tc) which are known to be generally overabundant in those stars with planets, since a Tc-dependence is expected if the cause of such a metal-richness is due to the accretion of solid planetesimals onto the host star. We found, however, that all elements we studied behave themselves quite similarly to Fe (i.e., [X/Fe]~0) even for the case of volatile elements, which may suggest that the enhanced metallicity in those planet-bearing stars is not so much an acquired character (by accretion of rocky material) as rather primordial.Comment: 22 pages, 8 figures, to appear in PAS

    Low- and Medium-Dispersion Spectropolarimetry of Nova V475 Sct (Nova Scuti 2003): Discovery of an Asymmetric High-Velocity Wind in a Moderately Fast Nova

    Full text link
    We present low-resolution (R∼90R\sim 90) and medium-resolution (R∼2500R\sim 2500) spectropolarimetry of Nova V475 Sct with the HBS instrument, mounted on the 0.91-m telescope at the Okayama Astrophysical Observatory, and with FOCAS, mounted on the 8.2-m Subaru telescope. We estimated the interstellar polarization toward the nova from the steady continuum polarization components and Hα\alpha line emission components. After subtracting the interstellar polarization component from the observations, we found that the Hα\alpha emission seen on 2003 October 7 was clearly polarized. In the polarized flux spectrum, the Hα\alpha emission had a distinct red wing extending to ∼+4900\sim +4900 km s−1^{-1} and a shoulder around +3500+3500 km s−1^{-1}, showing a constant position angle of linear polarization \theta_{\rm *}\simeq 155\arcdeg\pm 15\arcdeg. This suggests that the nova had an asymmetric outflow with a velocity of vwind≃3500v_{\rm wind}\simeq 3500 km s−1^{-1} or more, which is six times higher than the expansion velocity of the ionized shell at the same epoch. Such a high-velocity component has not previously been reported for a nova in the `moderately fast' speed class. Our observations suggest the occurrence of violent mass-loss activity in the nova binary system even during the common-envelope phase. The position angle of the polarization in the Hα\alpha wing is in good agreement with that of the continuum polarization found on 2003 September 26 (p∗≃0.4p_{\rm *}\simeq 0.4--0.6 %), which disappeared within the following 2 d. The uniformity of the PA between the continuum polarization and the wing polarization on October 7 suggests that the axis of the circumstellar asymmetry remained nearly constant during the period of our observations.Comment: 27 pages, 7 figures, accepted for publication in A

    Polysaccharide Peptide Extract From <i>Coriolus versicolor</i> Increased T<sub>max</sub> of Tamoxifen and Maintained Biochemical Serum Parameters, With No Change in the Metabolism of Tamoxifen in the Rat.

    Get PDF
    Background: Polysaccharide peptide (PSP) extract of Coriolus versicolor (L.) Quél. (1886) (Trametes; Polyporaceae) is increasingly used in cancer to support the immune system. However, its interaction with tamoxifen is unknown. Aim of the study: To investigate the effect of a PSP extract on the pharmacokinetics, biochemical parameters, and depletion of tamoxifen. Methods: The pharmacokinetic and biochemical parameters of tamoxifen (20 mg/mL oral single dose and repeated dosing for 12 days) was investigated in female Sprague Dawley rats with or without PSP (340 mg/kg orally for 7 days) (n = 5 per group). Tamoxifen (5 µM) depletion rate with PSP (10–100 μg/mL) was measured in female rat hepatic microsomes in vitro. Results: Compared to tamoxifen alone, the time to reach maximum concentration (Tmax) significantly increased by 228% (4.15 ± 1.15 versus 13.6 ± 2.71 h) in the single tamoxifen dose with PSP and 93% (6 ± 2.17 versus 11.6 ± 0.4 h) in the repeated tamoxifen dosing with PSP (p 0.05). PSP extract did not significantly alter in vitro intrinsic clearance of tamoxifen compared to tamoxifen control. Conclusion: With the increased use of PSP as an adjunct therapy, this study highlights the importance of clinician’s knowledge of its interaction with tamoxifen to avoid compromising clinical actions and enhancing clinical therapy

    TIM-1 and TIM-4 Glycoproteins Bind Phosphatidylserine and Mediate Uptake of Apoptotic Cells

    Get PDF
    SummaryThe T cell immunoglobulin mucin (TIM) proteins regulate T cell activation and tolerance. Here we showed that TIM-4 is expressed on human and mouse macrophages and dendritic cells, and both TIM-4 and TIM-1 specifically bound phosphatidylserine (PS) on the surface of apoptotic cells but not any other phospholipid tested. TIM-4+ peritoneal macrophages, TIM-1+ kidney cells, and TIM-4- or TIM-1-transfected cells efficiently phagocytosed apoptotic cells, and phagocytosis could be blocked by TIM-4 or TIM-1 monoclonal antibodies. Mutations in the unique cavity of TIM-4 eliminated PS binding and phagocytosis. TIM-4 mAbs that blocked PS binding and phagocytosis mapped to epitopes in this binding cavity. These results show that TIM-4 and TIM-1 are immunologically restricted members of the group of receptors whose recognition of PS is critical for the efficient clearance of apoptotic cells and prevention of autoimmunity

    Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity

    Get PDF
    Beech and pine wood blocks were treated with 1,3-dimethylol-4,5-dihydroxyethylen urea (DMDHEU) to increasing weight percent gains (WPG). The resistance of the treated specimens against Trametes versicolor and Coniophora puteana, determined as mass loss, increased with increasing WPG of DMDHEU. Metabolic activity of the fungi in the wood blocks was assessed as total esterase activity (TEA) based on the hydrolysis of fluorescein diacetate and as heat or energy production determined by isothermal micro-calorimetry. Both methods revealed that the fungal activity was related with the WPG and the mass loss caused by the fungi. Still, fungal activity was detected even in wood blocks of the highest WPG and showed that the treatment was not toxic to the fungi. Energy production showed a higher consistency with the mass loss after decay than TEA; higher mass loss was more stringently reflected by higher heat production rate. Heat production did not proceed linearly, possibly due to the inhibition of fungal activity by an excess of carbon dioxide

    International Union of Basic and Clinical Pharmacology. XCVI. Pattern Recognition Receptors in Health and Disease

    Full text link
    Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future

    Association between the SERPING1 Gene and Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in Japanese

    Get PDF
    PURPOSE: Recently, a complement component 1 inhibitor (SERPING1) gene polymorphism was identified as a novel risk factor for age-related macular degeneration (AMD) in Caucasians. We aimed to investigate whether variations in SERPING1 are associated with typical AMD or with polypoidal choroidal vasculopathy (PCV) in a Japanese population. METHODS: We performed a case-control study in a group of Japanese patients with typical AMD (n = 401) or PCV (n = 510) and in 2 independent control groups--336 cataract patients without age-related maculopathy and 1,194 healthy Japanese individuals. Differences in the observed genotypic distribution between the case and control groups were tested using chi-square test for trend. Age and gender were adjusted using logistic regression analysis. RESULTS: We targeted rs2511989 as the haplotype-tagging single nucleotide polymorphism (SNP) for the SERPING1 gene, which was reported to be associated with the risk of AMD in Caucasians. Although we compared the genotypic distributions of rs2511989 in typical AMD and PCV patients against 2 independent control groups (cataract patients and healthy Japanese individuals), SERPING1 rs2511989 was not significantly associated with typical AMD (P = 0.932 and 0.513, respectively) or PCV (P = 0.505 and 0.141, respectively). After correction for age and gender differences based on a logistic regression model, the difference in genotypic distributions remained insignificant (P>0.05). Our sample size had a statistical power of more than 90% to detect an association of a risk allele with an odds ratio reported in the original studies for rs2511989 for developing AMD. CONCLUSIONS: In the present study, we could not replicate the reported association between SERPING1 and either neovascular AMD or PCV in a Japanese population; thus, the results suggest that SERPING1 does not play a significant role in the risk of developing AMD or PCV in Japanese

    Transcriptional Regulation of Rod Photoreceptor Homeostasis Revealed by In Vivo NRL Targetome Analysis

    Get PDF
    A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP–Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP–Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis

    Learning new sensorimotor contingencies:Effects of long-term use of sensory augmentation on the brain and conscious perception

    Get PDF
    Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation

    Effect of Angelica acutiloba

    No full text
    • …
    corecore