104 research outputs found
Always Contact a Vascular Interventional Specialist Before Amputating a Patient with Critical Limb Ischemia
Patients with severe critical limb ischemia (CLI) due to long tibial artery occlusions are often poor candidates for surgical revascularization and frequently end up with a lower limb amputation. Subintimal angioplasty (SA) offers a minimally invasive alternative for limb salvage in this severely compromised patient population. The objective of this study was to evaluate the results of SA in patients with CLI caused by long tibial occlusions who have no surgical options for revascularization and are facing amputation. We retrospectively reviewed all consecutive patients with CLI due to long tibial occlusions who were scheduled for amputation because they had no surgical options for revascularization and who were treated by SA. A total of 26 procedures in 25 patients (14 males; mean age, 70 ± 15 [SD] years) were evaluated. Technical success rate was 88% (23/26). There were four complications, which were treated conservatively. Finally, in 10 of 26 limbs, no amputation was needed. A major amputation was needed in 10 limbs (7 below-knee amputations and 3 above-knee amputations). Half of the major amputations took place within 3 months after the procedure. Cumulative freedom of major amputation after 12 months was 59% (SE = 11%). In six limbs, amputation was limited to a minor amputation. Seven patients (28%) died during follow-up. In conclusion, SA of the tibial arteries seem to be a valuable treatment option to prevent major amputation in patients with CLI who are facing amputation due to lack of surgical options
Treatment adherence with the easypod™ growth hormone electronic auto-injector and patient acceptance: survey results from 824 children and their parents
<p>Abstract</p> <p>Background</p> <p>Accurately monitoring adherence to treatment with recombinant human growth hormone (r-hGH) enables appropriate intervention in cases of poor adherence. The electronic r-hGH auto-injector, easypod™, automatically records the patient's adherence to treatment. This study evaluated adherence to treatment of children who started using the auto-injector and assessed opinions about the device.</p> <p>Methods</p> <p>A multicentre, multinational, observational 3-month survey in which children received r-hGH as part of their normal care. Physicians reviewed the recorded dose history and children (with or without parental assistance) completed a questionnaire-based survey. Children missing ≤2 injections per month (92% of injections given) were considered adherent to treatment. Adherence was compared between GH treatment-naïve and treatment-experienced children.</p> <p>Results</p> <p>Of 834 recruited participants, 824 were evaluated. The median (range) age was 11 (1-18) years. From the recorded dose history, 87.5% of children were adherent to treatment over the 3-month period. Recorded adherence was higher in treatment-naïve (89.7%, n = 445/496) than in treatment-experienced children (81.7%, n = 152/186) [Fisher's exact test FI(X) = 7.577; <it>p </it>= 0.0062]. According to self-reported data, 90.2% (607/673) of children were adherent over 3 months; 51.5% (421/817) missed ≥1 injection over this period (mainly due to forgetfulness). Concordance between reported and recorded adherence was 84.3%, with a trend towards self-reported adherence being higher than recorded adherence. Most children liked the auto-injector: over 80% gave the top two responses from five options for ease of use (720/779), speed (684/805) and comfort (716/804). Although 38.5% (300/780) of children reported pain on injection, over half of children (210/363) considered the pain to be less or much less than expected. Given the choice, 91.8% (732/797) of children/parents would continue using the device.</p> <p>Conclusions</p> <p>easypod™ provides an accurate method of monitoring adherence to treatment with r-hGH. In children who received treatment with r-hGH using easypod™, short-term adherence is good, and significantly higher in treatment-naïve children compared with experienced children. Children/parents rate the device highly. The high level of acceptability of the device is reflected by a desire to continue using it by over 90% of the children in the survey.</p
Muscle Fiber Viability, a Novel Method for the Fast Detection of Ischemic Muscle Injury in Rats
Acute lower extremity ischemia is a limb- and life-threatening clinical problem. Rapid detection of the degree of injury is crucial, however at present there are no exact diagnostic tests available to achieve this purpose. Our goal was to examine a novel technique - which has the potential to accurately assess the degree of ischemic muscle injury within a short period of time - in a clinically relevant rodent model. Male Wistar rats were exposed to 4, 6, 8 and 9 hours of bilateral lower limb ischemia induced by the occlusion of the infrarenal aorta. Additional animals underwent 8 and 9 hours of ischemia followed by 2 hours of reperfusion to examine the effects of revascularization. Muscle samples were collected from the left anterior tibial muscle for viability assessment. The degree of muscle damage (muscle fiber viability) was assessed by morphometric evaluation of NADH-tetrazolium reductase reaction on frozen sections. Right hind limbs were perfusion-fixed with paraformaldehyde and glutaraldehyde for light and electron microscopic examinations. Muscle fiber viability decreased progressively over the time of ischemia, with significant differences found between the consecutive times. High correlation was detected between the length of ischemia and the values of muscle fiber viability. After reperfusion, viability showed significant reduction in the 8-hour-ischemia and 2-hour-reperfusion group compared to the 8-hour-ischemia-only group, and decreased further after 9 hours of ischemia and 2 hours of reperfusion. Light- and electron microscopic findings correlated strongly with the values of muscle fiber viability: lesser viability values represented higher degree of ultrastructural injury while similar viability results corresponded to similar morphological injury. Muscle fiber viability was capable of accurately determining the degree of muscle injury in our rat model. Our method might therefore be useful in clinical settings in the diagnostics of acute ischemic muscle injury
Gene targeting in adult rhesus macaque fibroblasts
<p>Abstract</p> <p>Background</p> <p>Gene targeting in nonhuman primates has the potential to produce critical animal models for translational studies related to human diseases. Successful gene targeting in fibroblasts followed by somatic cell nuclear transfer (SCNT) has been achieved in several species of large mammals but not yet in primates. Our goal was to establish the protocols necessary to achieve gene targeting in primary culture of adult rhesus macaque fibroblasts as a first step in creating nonhuman primate models of genetic disease using nuclear transfer technology.</p> <p>Results</p> <p>A primary culture of adult male fibroblasts was transfected with hTERT to overcome senescence and allow long term <it>in vitro </it>manipulations. Successful gene targeting of the HPRT locus in rhesus macaques was achieved by electroporating S-phase synchronized cells with a construct containing a SV40 enhancer.</p> <p>Conclusion</p> <p>The cell lines reported here could be used for the production of null mutant rhesus macaque models of human genetic disease using SCNT technology. In addition, given the close evolutionary relationship and biological similarity between rhesus macaques and humans, the protocols described here may prove useful in the genetic engineering of human somatic cells.</p
Dynamic Contrast-Enhanced MRI Assessment of Hyperemic Fractional Microvascular Blood Plasma Volume in Peripheral Arterial Disease: Initial Findings
OBJECTIVES: The aim of the current study was to describe a method that assesses the hyperemic microvascular blood plasma volume of the calf musculature. The reversibly albumin binding contrast agent gadofosveset was used in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) to assess the microvascular status in patients with peripheral arterial disease (PAD) and healthy controls. In addition, the reproducibility of this method in healthy controls was determined. MATERIALS AND METHODS: Ten PAD patients with intermittent claudication and 10 healthy control subjects were included. Patients underwent contrast-enhanced MR angiography of the peripheral arteries, followed by one DCE MRI examination of the musculature of the calf. Healthy control subjects were examined twice on different days to determine normative values and the interreader and interscan reproducibility of the technique. The MRI protocol comprised dynamic imaging of contrast agent wash-in under reactive hyperemia conditions of the calf musculature. Using pharmacokinetic modeling the hyperemic fractional microvascular blood plasma volume (V(p), unit: %) of the anterior tibial, gastrocnemius and soleus muscles was calculated. RESULTS: V(p) was significantly lower for all muscle groups in PAD patients (4.3±1.6%, 5.0±3.3% and 6.1±3.6% for anterior tibial, gastrocnemius and soleus muscles, respectively) compared to healthy control subjects (9.1±2.0%, 8.9±1.9% and 9.3±2.1%). Differences in V(p) between muscle groups were not significant. The coefficient of variation of V(p) varied from 10-14% and 11-16% at interscan and interreader level, respectively. CONCLUSIONS: Using DCE MRI after contrast-enhanced MR angiography with gadofosveset enables reproducible assessment of hyperemic fractional microvascular blood plasma volume of the calf musculature. V(p) was lower in PAD patients than in healthy controls, which reflects a promising functional (hemodynamic) biomarker for the microvascular impairment of macrovascular lesions
MRI of Arterial Flow Reserve in Patients with Intermittent Claudication: Feasibility and Initial Experience
Objectives: The aim of this work was to develop a MRI method to determine arterial flow reserve in patients with intermittent claudication and to investigate whether this method can discriminate between patients and healthy control subjects. Methods: Ten consecutive patients with intermittent claudication and 10 healthy control subjects were included. All subjects underwent vector cardiography triggered quantitative 2D cine MR phase-contrast imaging to obtain flow waveforms of the popliteal artery at rest and during reactive hyperemia. Resting flow, maximum hyperemic flow and absolute flow reserve were determined and compared between the two groups by two independent MRI readers. Also, interreader reproducibility of flow measures was reported. Results: Resting flow was lower in patients compared to controls (4.961.6 and 11.163.2 mL/s in patients and controls, respectively (p,0.01)). Maximum hyperemic flow was 7.362.9 and 16.463.2 mL/s (p,0.01) and the absolute flow reserve was 2.461.6 and 5.361.3 mL/s (p,0.01), respectively in patients and controls. The interreader coefficient of variation was below 10 % for all measures in both patients and controls. Conclusions: Quantitative 2D MR cine phase-contrast imaging is a promising method to determine flow reserve measures in patients with peripheral arterial disease and can be helpful to discriminate patients with intermittent claudication fro
Exome screening to identify loss-of-function mutations in the rhesus macaque for development of preclinical models of human disease
BACKGROUND: Exome sequencing has been utilized to identify genetic variants associated with disease in humans. Identification of loss-of-function mutations with exome sequencing in rhesus macaques (Macaca mulatta) could lead to valuable animal models of genetic disease. Attempts have been made to identify variants in rhesus macaques by aligning exome data against the rheMac2 draft genome. However, such efforts have been impaired due to the incompleteness and annotation errors associated with rheMac2. We wished to determine whether aligning exome reads against our new, improved rhesus genome, MacaM, could be used to identify high impact, loss-of-function mutations in rhesus macaques that would be relevant to human disease. RESULTS: We compared alignments of exome reads from four rhesus macaques, the reference animal and three unrelated animals, against rheMac2 and MacaM. Substantially more reads aligned against MacaM than rheMac2. We followed the Broad Institute’s Best Practice guidelines for variant discovery which utilizes the Genome Analysis Toolkit to identify high impact mutations. When rheMac2 was used as the reference genome, a large number of apparent false positives were identified. When MacaM was used as the reference genome, the number of false positives was greatly reduced. After examining the variant analyses conducted with MacaM as reference genome, we identified two putative loss-of-function mutations, in the heterozygous state, in genes related to human health. Sanger sequencing confirmed the presence of these mutations. We followed the transmission of one of these mutations (in the butyrylthiocholine gene) through three generations of rhesus macaques. Further, we demonstrated a functional decrease in butyrylthiocholinesterase activity similar to that observed in human heterozygotes with loss-of-function mutations in the same gene. CONCLUSIONS: The new MacaM genome can be effectively utilized to identify loss-of-function mutations in rhesus macaques without generating a high level of false positives. In some cases, heterozygotes may be immediately useful as models of human disease. For diseases where homozygous mutants are needed, directed breeding of loss-of-function heterozygous animals could be used to create rhesus macaque models of human genetic disease. The approach we describe here could be applied to other mammals, but only if their genomes have been improved beyond draft status. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2509-5) contains supplementary material, which is available to authorized users
- …