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Abstract

Acute lower extremity ischemia is a limb- and life-threatening clinical problem. Rapid detection of the degree of injury is
crucial, however at present there are no exact diagnostic tests available to achieve this purpose. Our goal was to examine a
novel technique - which has the potential to accurately assess the degree of ischemic muscle injury within a short period of
time - in a clinically relevant rodent model. Male Wistar rats were exposed to 4, 6, 8 and 9 hours of bilateral lower limb
ischemia induced by the occlusion of the infrarenal aorta. Additional animals underwent 8 and 9 hours of ischemia followed
by 2 hours of reperfusion to examine the effects of revascularization. Muscle samples were collected from the left anterior
tibial muscle for viability assessment. The degree of muscle damage (muscle fiber viability) was assessed by morphometric
evaluation of NADH-tetrazolium reductase reaction on frozen sections. Right hind limbs were perfusion-fixed with
paraformaldehyde and glutaraldehyde for light and electron microscopic examinations. Muscle fiber viability decreased
progressively over the time of ischemia, with significant differences found between the consecutive times. High correlation
was detected between the length of ischemia and the values of muscle fiber viability. After reperfusion, viability showed
significant reduction in the 8-hour-ischemia and 2-hour-reperfusion group compared to the 8-hour-ischemia-only group,
and decreased further after 9 hours of ischemia and 2 hours of reperfusion. Light- and electron microscopic findings
correlated strongly with the values of muscle fiber viability: lesser viability values represented higher degree of
ultrastructural injury while similar viability results corresponded to similar morphological injury. Muscle fiber viability was
capable of accurately determining the degree of muscle injury in our rat model. Our method might therefore be useful in
clinical settings in the diagnostics of acute ischemic muscle injury.
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Introduction

Acute long-lasting arterial occlusions represent serious clinical

problems due to their frequent occurrence (incidence: 15/100000)

and severe complications [1]. Even recent studies put post-

operative limb loss between 10 and 30%, and post-operative

mortality between 10–20% [1–3], both of which are direct

consequences of the severe ischemic-reperfusion injury to the

extremities. Prompt and proper diagnosis is therefore important.

The Rutherford classification is widely used for staging (Stages I–

III) the severity of acute ischemic injury of the limbs in the clinical

practice [4], designed to determine the urgency of a revascular-

ization procedure [5]. Assessment of the degree of ischemic injury

within a clinically relevant time-frame however still remains

unsolved.

Rapid determination of the precise degree of ischemic injury is

of great clinical importance [6], whereas revascularization of a

severely injured extremity might aggravate complication rates and

mortality. In case of irreversible injury amputation is the only

solution to avoid serious life threatening complications [7].

The aim of the current study was to describe and evaluate a

technique – muscle fiber viability measurements on frozen sections

of muscle biopsies – which has the capability to assess the degree of

ischemic injury in a short period of time. Comparing the viability

results with the morphological evaluations of muscle injury, our

study shows that this technique is a reliable detection tool which, if

adapted to clinical practice, could undoubtedly help to determine

the severity of muscle damage, therefore to facilitate therapeutic

decisions.

Materials and Methods

Animals and ethics statement
Male Wistar rats (n = 42) weighing 220–250 grams were used

(Charles Rivers Hungary Ltd, Budapest, Hungary). The experi-

mental design was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on Animal Experimen-

tation of Semmelweis University (Permit Number: 22.1/794/003/

2009). All surgeries were performed under general anesthesia, with

efforts made to minimize suffering. The animals were kept under

specific, pathogen-free conditions in 12-hour day-night cycles at

22–24uC with unlimited access to commercial pellets and water.
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Each experiment was started at the same time of day to avoid the

effects of circadian rhythm.

Experimental design
Under general anesthesia the right jugular vein was cannulated

for administration of anesthetics (ketamine and xylasine; 25 and

2.5 mg/bwkg/h respectively) and saline solution (3 mL/bwkg/h).

Body temperature was maintained between 36.5 and 37.5uC by a

heating pad connected to a rectal thermometer (Homoeothermic

Blanket Control Unit, Harvard Apparatus, Holliston, MA).

The experiment was divided into two parts: in the first part the

degree of ischemic injury alone was investigated with different

exclusion times, while in the second part, the additive effect of

reperfusion was studied using long-lasting exclusions followed by

reperfusion. Muscle samples were collected for muscle fiber

viability measurements and – to see if the data coincided with

morphological signs of injury – also for light- and electron

microscopic examinations.

Ischemic experiment. Through a median laparotomy the

infrarenal section of the abdominal aorta was exposed. Four, 6, 8

and 9 hours of bilateral lower limb ischemia was established via

infrarenal aortic occlusion [8]. After inducing ischemia, the

abdominal wall was sutured in two layers. No reperfusion was

allowed in this experiment. Samples were taken at the end of

ischemia from the anterior tibial muscle.

Reperfusion experiment. 8 and 9 hours of infrarenal

occlusion were followed by 2 hours of reperfusion. Five minutes

prior to reperfusion 60 IU Na-heparin was administered intrave-

nously to mimic the clinical situation. After the specified time of

ischemia the aortic occlusion was terminated and the abdominal

wall was resutured in two layers. Samples from the anterior tibial

muscle were harvested at the end of the reperfusion period.

Six additional animals were euthanized without any interven-

tion to serve as untreated controls.

The experimental groups are summarized in Table 1.

Microcirculation
Laser Doppler Flowmeter (Moor DRT4, Moor Instruments

Ltd, London, UK) was placed on the surface of the biceps femoris

muscle to assess the alterations in microcirculatory flow during the

ischemic period in all groups. The flow was evaluated as described

by our team in detail previously [8].

Viability assessment
Muscle samples collected from the left anterior tibial muscle

were snap-frozen in liquid nitrogen and stored at 280uC until

further processing. Three mm thick cross sections were made in a

cryostat and stained for NADH-tetrazolium reductase (NADH-

TR) enzyme-histochemical reaction [9]. Slides were incubated for

30 minutes at 37uC in a solution of nitroblue tetrazolium (1.8 mg/

dL) and NADH (15 mg/dL) reagents (Sigma-Aldrich Inc, St.

Louis, MO) in 0.05 M TRIS buffer (pH 7.6). Unused tetrazolium

reagent was removed using ascending (30%, 60% and 90%) and

then descending concentrations of acetone. Morphometric assess-

ment of NADH-tetrazolium stained muscles was performed with

an Olympus BX50 microscope equipped with Olympus DP70

high resolution camera (Olympus Corporation, Tokyo, Japan),

using Leica QWin Pro (Leica Microsystems Ltd, Wetzlar,

Germany) software (Color settings: red: 160/0, green: 130/0

and blue: 175/66 on RGB scale). Ten different fields were

photographed randomly in each slide at 6006 magnification.

Viability of all fibers (total fiber viability) was calculated as a

proportion of the total area of positive staining and the total area

of muscle fibers in each picture. Furthermore, fibers were typed

according to their staining characteristics with NADH-TR: lightly

stained fibers were categorized as Type IIb (fast-twitch glycolytic),

while fibers with intense staining were categorized as Type I (slow-

twitch oxidative) [10], then the viability of each type was assessed

separately with the software. Viability of a fiber type was

calculated as a proportion of the total area of positive staining

and total area of corresponding fibers (e.g. Type IIb or Type I) in

each picture. The average of the 10 measurements was calculated

for each animal. Final results are expressed as a percentage of the

average of the untreated control muscles.

Table 1. Experimental groups.

Group Ischemic period (h) Reperfusion (2 h) n

4 6 8 9

Control - - - - - 6

4I + - 6

6I + - 6

8I + - 6

9I + - 6

8IR + + 6

9IR + + 6

I: ischemia, IR: ischemia followed by reperfusion.
doi:10.1371/journal.pone.0084783.t001

Figure 1. NADH-tetrazolium reductase stained sections from
the ischemic experiment. The figure shows representative pictures
taken from the anterior tibialis muscle of untreated control animals (A),
as well as after 4 (B), 6 (C), 8 (D) and 9 hours (E) of ischemia (induced by
infrarenal aortic occlusion) without reperfusion. Typical members of
Type I and Type IIb fibers are marked on each picture as I or IIb,
respectively. Bar: 35 mm.
doi:10.1371/journal.pone.0084783.g001
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Sample preparation for semithin sections and electron
microscopy

After the desired time of ischemia or ischemia and reperfusion

the right extremities were perfused through an intra-arterial

catheter with warm (37uC) 4% paraformaldehyde in 0.1 M

phosphate buffer (PB), followed by cold 2% glutaraldehyde

solution (2% GA in 0.1 M PB) for a total of 30 minutes.

Approximately 161 mm pieces of muscles were cut out and post-

fixed in 2% glutaraldehyde (1 hour) followed by 1% osmium-

tetroxide (in 0.1 M cacodylate buffer, 1 hour at 4uC). All pieces

were dehydrated in graded alcohol series and embedded in

araldite (Durcupan ACM Fluka, Sigma-Aldrich, St. Louis, MO).

Ultrathin sections were prepared with an ultramicrotome,

contrast-stained with uranyl acetate and lead citrate, and analyzed

using a Hitachi H7500 transmission electron microscope (Hitachi

Ltd, Tokyo, Japan). Electron micrographs were taken by an

Olympus-SIS digital camera (Megaview II).

Semithin sections stained with toluidine blue were also prepared

for light microscopic examination and inspected with a Zeiss

Axiophot microscope equipped with AxioCamHRc digital camera

(Carl Zeiss, Oberkochen, Germany).

The final montages from the pictures were prepared using

Adobe Photoshop 7.0 (San Diego, CA) program.

Statistical analysis
All values are expressed as means 6s.e.m. The assumption of

normality was assessed with Shapiro-Wilk’s test. Accordingly, one-

way analysis of variance (ANOVA) was used for comparison of all

groups in case of microcirculatory measurements, while in case of

viability assessment two-way ANOVA was applied. Scheffe’s post-

hoc analysis was performed for between group comparisons. Data

correlation was evaluated using Pearson’s method. A 95%

confidence interval was considered as statistically significant

(P,.05). Statistical calculations were performed using IBM SPSS

Statistics 20.0 software (IBM Corporation, Armonk, NY).

Results

Microcirculation
Microcirculatory flow was assessed throughout the ischemic

period in all groups to evaluate whether this model is able to

produce continuous ischemia without significant variations in flow.

After occlusion, the flow dropped to 17.367.3% of the baseline

flow and remained constant during the course of ischemia even

9 hours after the occlusion (16.569.2% of baseline). Flow values

did not differ significantly in either of the ischemic groups, and

remained below 30% in every animal, indicating that infrarenal

aortic occlusion is capable of causing significant ischemia in the

extremities with little or no individual variations and remaining

constant throughout the whole experiment.

Viability assessment – Ischemic experiment
Muscle viability as assessed by NADH-TR staining (Figure 1)

decreased continuously over the time of ischemia with respect to

all measurements (untreated control: Type IIb: 100.065.7%,

Type I: 100.064.1%, total fiber viability: 100.063.9%; after

4 hours: 61.964.3%, 58.865.9%, 60.565.6%; 6 hours:

46.464.2%, 39.565.2%, 43.865.4%; 8 hours: 29.163.5%,

20.166.2%, 24.365.7%; 9 hours: 15.563.9%, 9.563.1%,

12.162.9%). Significant differences were found between the

consecutive times of ischemia (P,.001) in all selectively assessed

fiber types as well as in total fiber viability. Data analysis showed

high correlation between length of ischemia and fiber viability in

all measurements (Type IIb: R = 2.989; R2 = .978; P,.001; Type

I: R = 2.990; R2 = .979; P,.001, total fiber viability: R = 2.989;

R2 = .978; P,.001) (Figure 2). Type I fibers suffered greater

damage compared to Type IIb fibers, which became significant

after 6 hours of ischemia (P6h,.05, P8h,.01, P9h,.05). No

significant differences could be found between total fiber viability

and any of the fiber types (P..05).

Figure 2. Changes in muscle fiber viability with the progression of ischemia regarding Type IIb, Type I fibers as well as total fiber
viability. Muscle fiber viability decreased continuously over the time of ischemia, Pearson’s analysis showed high correlation between the length of
ischemia and muscle fiber viability in all three measurements. Type IIb fibers suffered greater damage compared to Type I fibers, which became
significant after 6 hours of ischemia (P6h,.05, P8h,.01, P9h,.05). No significant differences (P..05) could be found between total fiber viability and
any fiber types (Two-way ANOVA with Scheffe’s post-hoc correction). n = 6 per group.
doi:10.1371/journal.pone.0084783.g002

Fast Detection of Muscle Injury

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e84783



Light microscopy of semithin sections – Ischemic
experiment

In order to see if the decrease in muscle fiber viability coincides

with the morphological signs of detectable injury, perfusion-fixed,

semithin sections stained with toluidine blue were inspected. No

detectable damage in muscle fibers of the untreated control

animals was observed (Figure 3A). After 4 and 6 hours of ischemia

no visible pathological changes were present either. Eight hours

long ischemia (Figure 3B) resulted in slight hyperchromasia, with

small homogeneous droplets of various densities appearing in some

of the fibers. Mostly the fibers with higher mitochondria content -

supposedly the red fibers - were affected. Nuclei showed signs of

marginalization of heterochromatin. Capillary lumina seemed to

be widened.

After 9 hours of ischemia hyperchromasia was more pro-

nounced and a few hypercontracting fibers were detected. In some

fibers cross striation became more pronounced, while becoming

faded in others. In most of the fibers small homogeneous droplets

of various densities were present, which were detectable even at

low magnifications. At this stage, all fiber types contained these

droplets, with emphasis on the mitochondria-rich fibers. The

changes in nuclear morphology were more pronounced and

widened capillaries were still present (Figure 3C).

Electron microscopy – Ischemic experiment
In order to supply a more detailed description of the

morphological signs of injury, electron microscopic appearance

of the muscle fibers was studied. Electron micrographs of muscle

fibers in control animals showed normal morphology and no

appreciable damage (Figure 4A, B).

Eight-hours-long ischemia resulted in intact myofibrillar struc-

tures. Glycogen granules were markedly reduced and mitochon-

dria were moderately swollen. Completely in line with the original

places of mitochondria, lipid-like homogeneous droplets with a

peripheral zone of electron-dense margin could be seen, primarily

in mitochondria-rich muscle fibers. At the same locations, dense

structures of various sizes could occasionally be observed

(Figure 4C, D).

Nine hours of ischemia resulted in near complete loss of cellular

glycogen content. The shape of mitochondria was variously

deformed with occasional flocculent matrices. Moderate amounts

of mitochondria showed signs of disruption, with myelin figures

observable in some places. Lipid-like droplets similar to those

observed in the 8I samples became more numerous. These lipid-

like structures could also be found in the subsarcolemmal

mitochondria clusters. The sarcoplasmic reticulum showed mod-

erate degrees of vacuolization and disorganization. Segregation of

euchromatic and heterochromatic components of the nucleus

became more prominent. The observed changes appeared also in

mitochondria-poor muscle fibers in a lower degree (Figure 4E, F).

Viability assessment – Reperfusion experiment
Viability showed significant reduction (P,.001) in the 8IR

group compared to the 8-hours-ischemia only (8I) group in both

assessed fiber types, as well as in total fiber viability. Also, viability

after 9 hours of ischemia and 2 hours of reperfusion (9IR)

decreased significantly in all measurements compared to the 9-

hours-ischemia group (P,.001). In the 8IR group Type I fibers

showed significantly decreased viability (P,.05) compared to the

Type IIb. No significant differences (P..05) could be found

between the fiber types in the 9IR group (Figure 5).

Light microscopic evaluation of semithin
sections – Reperfusion experiment

Eight hours of ischemia and 2 hours of reperfusion resulted in

marked morphological changes in the semithin sections. In

addition to the alterations visible in the eight-hour-ischemia-only

group, a higher number of lipid-like droplets were observable in

most of the fibers. In some muscle fibers thin clefts appeared

between the myofibrils. Also, nuclei with marginal heterochroma-

tin were frequent findings. As in other stages, mitochondria rich

fibers showed higher degree of injury (Figure 6A).

Reperfusion after 9 hours of ischemia showed large numbers of

necrotic fibers in semithin sections. Non-necrotic fibers showed the

same morphological pattern of injury as in case of the 8IR group

(Figure 6B).

Electron microscopy – Reperfusion experiment
Eight hours of ischemia followed by 2 hours of reperfusion

caused absence of glycogen. Lipid-like droplets similar to those

described previously were seen in extremely high numbers. Myelin

Figure 3. Morphology of muscle fibers in control animals and
after 8 and 9 hours of ischemia. Normal morphology of muscle
fibers, semithin sections from control muscle (A). After 8 hours of
ischemia (B), mostly mitochondria-rich fibers seemed to be affected,
while other fibers appeared to be normal. After 9 hours of ischemia (C),
almost all fibers showed mild or moderate degree of damage. Toluidine
blue staining. Bar: 20 mm.
doi:10.1371/journal.pone.0084783.g003
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figures were also frequently observed (Figure 7A), as was the

disintegration of several mitochondria (Figure 7B). Prominent

swelling of the sarcoplasmic reticulum was detectable. Similarly to

other samples, pathological alterations were more prominent in

mitochondria-rich fibers (Figure 8A, B).

Two hours of reperfusion after 9 hours of ischemia resulted in

necrosis in the majority of fibers. Non-necrotic fibers showed

similar but more pronounced alterations as in the 8IR group

(Figure 8C, D).

Discussion

Severe long-lasting acute lower limb vascular occlusions are

associated with serious clinical conditions. The risk is high for the

development of irreversible lesions with only one therapeutic

option: amputation. However, bedside determination of the extent

of muscle injury is not yet possible, thus irreversible injuries can

not be separated in time from severe reversible ones.

In an attempt to resolve this problem our aim was to develop

and evaluate a technique which could be suitable for rapid

assessment of the degree of muscle injury, with the use of an

experimental model mimicking clinical settings.

In most acute occlusive clinical situations significant residual

flow is present due to the existence of collateral vessels [11],

therefore ischemia is rarely complete [12]. Infrarenal aortic

occlusion seems to be the most suitable method to mimic human

acute occlusive situations in rats namely, during occlusion a certain

degree of collateral flow is always present [13]. Even so, aortic

exclusion is able to produce sufficient degree of ischemic injury

[13,14], therefore aortic occlusion was chosen for ischemia

induction in the current study.

All animals were kept under anesthesia during the whole course

of the experiment to eliminate fluctuations in flow caused by

motion [13,15]. Microcirculatory measurements were conducted

to confirm that residual flow remained stable during the course of

ischemia. In the current study, residual flow was constant

throughout the whole ischemic period, making the results

comparable and reproducible. Flow above 30% of the baseline

was not detected in any individual rat, confirming that this type of

occlusion was able to produce sufficient degree of ischemia [16].

Figure 4. Ultrastructural changes in muscle fibers after 8 or 9 hours of ischemia. Fibers from control muscle displayed normal morphology
both in mitochondria-poor (A) and mitochondria-rich muscle fibers (the latter were assumed to be red fibers) (B). After 8 (C, D) and 9 hours of
ischemia (E, F) signs of morphological damages were already evident, several lipid-like homogeneous droplets with a peripheral zone of electron-
dense margin could be seen (*), especially in mitochondria-rich fibers (D, F, right column). Bar: 2 mm.
doi:10.1371/journal.pone.0084783.g004
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Depletion of energy reserves results in cell death [17]. The

mitochondria are the most important organella for energy

transformation and since it has been demonstrated that mito-

chondrial function decreases during ischemia [18], detecting the

dysfunction of these subcellular structures might be the most

reliable method for identifying cellular injury [19]. Tetrazolium

salt reduction is widely applied to indicate mitochondrial integrity

[20] since decreased reaction implies organelle disruption [21–23],

thus these salts are able to assess cellular viability.

Mostly spectrophotometric [24–29] and planimetric [30–35]

methods are in general use for the quantitative assessment of

tetrazolium reduction in vivo. Both methods are reported to

correlate well with the extent of muscle injury [36], however these

methods were mostly tested and proved as being effective after

revascularization. Only limited data have been obtained so far

about the use of planimetry under sole ischemic conditions [37]

and in regard to spectrophotometry no data have been reported

hitherto. Furthermore, these methods are unfortunately not

suitable for bedside diagnostic purposes due to long preparation

times and/or large sample requirements.

It was previously demonstrated that the intensity of NADH-TR

staining on frozen sections decreases after a relatively long period

of ischemia, even without reperfusion [38]. Whilst frozen

sectioning is able to provide rapid sample preparation routinely

utilized in various surgical conditions [39–41], the application of

tetrazolium salt reduction on frozen sections could provide the

basis for rapid determination of the degree of injury in case of

acute limb ischemia. Regarding our new method the procession

time mostly depends on the staining procedure, while quantitative

assessment can be performed in few minutes. Namely, sampling

and preparation of frozen sections can be achieved within five to

ten minutes. The staining procedure used in this study takes an

additional forty minutes. Photography and morphometric analysis

can be completed in another ten to fifteen minutes. Therefore

quantitative results can be produced by this technique approxi-

mately within an hour. It should be noted however that use of the

software with confidence requires proper training.

The goal of the present study was to evaluate the suitability of

our technique in determining the degree of ischemic injury. We

therefore applied increasing ischemic intervals and evaluated the

extent of injury with the software enhanced NADH-TR reaction.

The results of our ischemic experiment showed that with our

technique a continuous decrease in muscle viability could be

demonstrated both in Type IIb and Type I fibers as well as in

regard to total fiber viability. The obtained results indicated that

Type I fibers suffered greater injury than Type IIb fibers. A strong

correlation was discovered between muscle fiber viability and the

length of ischemia in both examined fiber types, as well as in total

fiber viability. Similar progressive decline in viability was

previously observed using the planimetric method, however,

without detection of such correlation with the length of ischemia

[37]. Furthermore, in another study authors failed to detect any

changes in viability during ischemia with the use of the planimetric

method [42].

To verify that the obtained viability results represent true

muscle injury, light- and electron microscopic evaluations were

Figure 5. Viability results after long-lasting ischemia and reperfusion. Muscle fiber viability showed significant reduction after 8 hours of
ischemia and 2 hours of reperfusion compared to the 8-hour-ischemia-only group regarding all three fiber measurements. Also, viability after 9 hours
of ischemia and 2 hours of reperfusion decreased significantly compared to the 9-hour-ischemia-only group. Significant difference could be found
between the two ischemia-only groups, nevertheless 8 hours ischemia followed by 2 hours reperfusion and 9 hours ischemia alone resulted in a
similar loss of viability in all fiber measurements. Type I fibers showed significantly greater loss of viability compared to Type IIb fibers in the 8I, 8IR
and 9I groups. Values are given as means 6s.e.m. Between group and within fiber comparison by Two-way ANOVA: P,.001; P,.001 respectively.
Differences between the groups by Scheffe’s post-hoc test were as follows: # P,.001 vs. corresponding 8I group; & P,.05 vs. corresponding 8IR
group; 1 P,.001 vs. corresponding 9I group; NS P..05 vs. corresponding 9I group. Differences within fibers by Scheffe’s post-hoc test were: $ P,.05
vs. corresponding Type IIb fibers; @ P,.001 vs. corresponding Type IIb fibers; n = 6 per group.
doi:10.1371/journal.pone.0084783.g005
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performed. No morphological changes were present after shorter

periods of ischemia, a finding which was in consistency with

previous data [43]. Electron microscopic results showed moderate

degree of muscle injury after 8 hours of ischemia. After 9 hours,

the degree of ultrastructural muscle damage increased consider-

ably in all fiber types. Also, it was discovered that mitochondria-

rich fibers (which most likely represent the oxidative fibers: such as

Type IIa, or more likely Type I) sustained higher degree of

ischemic damage than mitochondria-poor ones (supposedly Type

IIb fibers). Therefore, the viability results obtained by our method

correlate well with the electron microscopic findings in case of

ischemic injury, since increasing ultrastructural damage resulted in

a continuous decrease in muscle fiber viability, furthermore the

differences between fiber types showed similar pattern by both

electron microscopy and muscle fiber viability.

The fact that various fiber types respond differently to ischemia

is well known [44]. There is some controversy regarding this topic,

however to this date mainly Type IIb fibers have been reported to

be more sensitive to ischemia [45–48]. By contrast, in our study we

found that Type I fibers were the first to display the signs of injury

and to show higher degree of injury than Type IIb fibers. This

controversy might be resolved by assuming that complete ischemia

– applied by the majority of the mentioned studies – (with no

residual flow present; e.g. in case of tourniquet application) effects

mostly the Type IIb, fast-twitch glycolytic fibers [49], whereas

incomplete ischemia (such as aortic occlusion) might be more

harmful to the Type I, slow-twitch oxidative fibers [15].

Reperfusion can paradoxically aggravate the degree of injury

[50,51], thus in the second part of our experiment we further

examined the sensitivity of our method after revascularization.

In the 9IR group excessive muscle necrosis could be observed

even in semithin sections, accompanied by almost complete

cessation of viability. In the 8IR group muscle damage progression

was also observable as compared with the 8I group. Both by

electron microscopy and the viability test, approximately the same

level of injury was detectable in the 8IR group as in the 9-hour-

ischemia-only group. These findings support the feasibility of the

assessment of muscle fiber viability, since similar morphological

muscle damage resulted in similar viability results (Figure 5).

Furthermore, the ultrastructural differences between fiber types in

the 8IR group were also explored by the viability measurements.

Given that the results of total fiber viability were manifested as

the median of the values obtained for the two separate fiber types

and further that the results of the two fiber types did not differ

significantly from the total fiber viability, the measurement of

viability of separate fiber types is not required in order to assess the

Figure 6. Morphological signs of ischemic-reperfusion damage
of muscle fibers as demonstrated on semithin sections. Marked
morphological changes were visible in all fibers even after 8 hours of
ischemia and 2 hours of reperfusion (A), while after 9 hours of ischemia
followed by 2 hours of reperfusion (B) necrosis (double arrow) was
already evident in the majority of the fibers. Toluidine blue staining. Bar:
20 mm.
doi:10.1371/journal.pone.0084783.g006

Figure 7. High magnification images of damaged muscle fibers
from the 8IR group. Lipid-like droplets (*) and myelin figures
(arrowheads) were frequently seen (A). Disrupted mitochondria with
dense granules of various sizes appeared in the same position (B -
arrow). Bar: 1 mm on figure A and 2 mm on figure B.
doi:10.1371/journal.pone.0084783.g007

Figure 8. Reperfusion augments ultrastructural damage after 8
or 9 hours ischemia and 2 hours reperfusion. In the 8IR group,
signs of degenerative changes similar to those observed in 8I group
became more prominent on electron microscopic samples. Several
lipid-like droplets were visible, being present in almost all fibers, both
with lower (A) or higher amounts of mitochondria (B). Prominent
swelling of the sarcoplasmic reticulum was also observed. In the 9IR
group, several necrotic fibers were seen (D), while the surviving fibers
belonged exclusively to the mitochondria-poor group (C). Bar: 2 mm.
doi:10.1371/journal.pone.0084783.g008
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degree of injury. Assessment of total fiber viability is sufficient

enough to produce reliable results.

It should be noted however that while our technique is faster

than the other methods mentioned, and also that by using frozen

samples the technique provides possibility for intra-operative

diagnosis, the one hour sample processing time might not be fast

enough. Since the staining procedure is the longest part of the

sample processing period, reducing its time to a minimum might

result in a clinically more relevant time frame. To achieve this

however, further studies are required to specify the shortest sample

processing time, which would provide the same specificity.

Nevertheless, the utilization of frozen sections carries the

possibility of simultaneous rapid routine histologic evaluation,

which could significantly contribute to the correct therapeutic

decision.

The lipid-like structures observable in places of mitochondria is

a finding rarely addressed. These structures detected in our

experiments are mainly inhomogeneous in structure, suggesting

that these bodies are of mitochondrial origin rather than being

actual storage lipid droplets. Our assumption is in accordance with

previous results of others [52,53]. It seems likely that the fine

technique of perfusion fixation followed by osmium post-fixation

can conserve these structures and increase their noticeability. The

facts that these structures are present in large numbers only in the

severely injured muscle fibers, and also that they are visible with

light microscopy suggest that examination of semithin sections of

perfusion fixed muscles may be sufficient to detect severe muscle

injury, without need for further electron microscopic examination.

Conclusion

In the current study authors present a novel diagnostic method,

which might be suitable for the rapid determination of the degree

of muscle injury. The results obtained by quantitative analysis

showed a continuous decline in viability, which strongly correlated

with the length of ischemia. Furthermore, the viability values

represented the ultrastructural injury well, as seen on the electron

micrographs; namely, high grade ultrastructural damage displayed

low viability values and similar ultrastructural injury characteris-

tics correlated to similar viability results. This technique might

therefore have the potential to be translated into clinical practice

in order to enable accurate therapeutic decisions regarding long-

lasting lower limb acute arterial occlusions.
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