116 research outputs found

    Oral Examination

    Get PDF
    The oral cavity is the first component of the digestive tract, which is delimited by the lips anteriorly and the oropharynx posteriorly. The oral cavity functions as a protective barrier and is an essential component for speech and swallowing, mastication, digestion, and taste sensation. The oral examination comprises a uniform and consistent inspection of the head and neck and an intraoral evaluation of the hard and soft tissues (see the images below) in conjunction with a thorough medical and dental history. The entire mouth should be inspected regardless of the patient’s chief complaint and reasons for the visit. [1, 2] Good patient’s history and careful examination are important to establish the correct diagnosis and provide appropriate treatment. The physical examination begins with an extraoral examination to identify possible lesions (such as rash, erythema, and pigmentation), swelling or facial asymmetry. The head and neck should be palpated to identify any tenderness, masses and lymphadenopathy. All muscles of mastication and temporomandibular joint should be palpated for tenderness; patients should be asked to open and close the mouth multiple times to evaluate any limited opening, deviations or asymmetries. The cranial nerve examination should be performed to assess possible neurosensory and neuromuscular deficits. A good light source is fundamental for a good intraoral examination. Any intraoral lesion should be described with respect to size, extent, thickness, color, texture, consistency, and tenderness

    Multiple Topical Applications of Arachidonic Acid to Mouse Ears Induce Inflammatory and Proliferative Changes

    Get PDF
    The response to daily topical applications of arachidonic acid (0.25 – 4 mg/ear/day) to the ears of outbred CD-1 mice was monitored. The first application produced erythema, extravasation of plasma proteins resulting in an increase in ear weight, and some neutrophil accumulation (detected histologically and quantified by myeloperoxidase content). The second application produced minimal edema but did cause erythema and a greater accumulation of neutrophils. Subsequent daily application caused erythema, neutrophil accumulation, and an increase in ear weight predominantly due to cell proliferation (epidermis and connective tissue). Daily applications of other unsaturated fatty acids did not match the response induced by arachidonic acid. Mast cell deficient mice (W/Wv) exhibited a smaller edema response to the first dose of arachidonic acid compared to either their wild-type controls or CD-1 mice. In addition, W/Wv mice exhibited a smaller ear weight increase and myeloperoxidase accumulation following eight daily doses of arachidonic acid. However, epidermal proliferation was similar in all the strains of mice tested. These data suggest that the edema caused by the first topical application of arachidonic acid is partly mast cell mediated. Mast cells also appear to be involved in the neutrophil infiltration induced by multiple topical applications, but not in the epidermal proliferation

    The Distribution of Melanocytes in the Leptomeninges of the Human Brain

    Get PDF
    The purpose of this study was to determine the qualitative and quantitative distribution of melanocytes in human leptomeninges by histochemical and ultrastructural techniques and to search for melanocytes in the mesothelial linings of the pleural and peritoneal cavities. Knowledge of the extracutaneous distribution of pigment cells will facilitate the interpretation of systemic symptoms in depigmentation disorders, such as vitiligo and the Vogt-Koyanagi-Harada syndrome.In 15 brains examined, leptomeningeal pigment cells were found principally over the ventrolateral surfaces of the medulla oblongata. Only isolated pigment-containing cells were found in the meninges covering other parts of the brain. The mean number of pigment cells in the medullary meninges of 5 brains was 325/mm2 ± 96. The presence of melanosomes as single, membrane- bound granules in all stages of melanization confirms that the melanin-containing dendritic cells of the leptomeninges are melanocytes and not macrophages.No pigmented cells were observed in the pleural or peritoneal samples examined

    Nano-vault architecture mitigates stress in silicon-based anodes for lithium-ion batteries

    Get PDF
    Nanomaterials undergoing cyclic swelling-deswelling benefit from inner void spaces that help accommodate significant volumetric changes. Such flexibility, however, typically comes at a price of reduced mechanical stability, which leads to component deterioration and, eventually, failure. Here, we identify an optimised building block for silicon-based lithium-ion battery (LIB) anodes, fabricate it with a ligand- and effluent-free cluster beam deposition method, and investigate its robustness by atomistic computer simulations. A columnar amorphous-silicon film was grown on a tantalum-nanoparticle scaffold due to its shadowing effect. PeakForce quantitative nanomechanical mapping revealed a critical change in mechanical behaviour when columns touched forming a vaulted structure. The resulting maximisation of measured elastic modulus (similar to 120GPa) is ascribed to arch action, a well-known civil engineering concept. The vaulted nanostructure displays a sealed surface resistant to deformation that results in reduced electrode-electrolyte interface and increased Coulombic efficiency. More importantly, its vertical repetition in a double-layered aqueduct-like structure improves both the capacity retention and Coulombic efficiency of the LIB. Lithiation of anodes during cycling of lithium-ion batteries generates stresses that reduce operation lifetime. Here, a composite silicon-based anode with a nanoscale vaulted architecture shows high mechanical stability and electrochemical performance in a lithium-ion battery.Peer reviewe

    Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation

    Get PDF
    Rationale Asthma phenotyping requires novel biomarker discovery. Objectives To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). Methods An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. Results In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-β and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. Conclusions The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA

    Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics

    Get PDF
    We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) ows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several special applications in heliophysics and astrophysics, assessing triumphs, challenges,and future directions

    Survival and development of Campoletis chlorideae on various insect and crop hosts: implications for Bt-transgenic crops

    Get PDF
    The parasitic wasp, Campoletis chlorideae is an important larval parasitoid of Helicoverpa armigera a serious pest of cotton, grain legumes and cereals. Large-scale deployment of Bt-transgenic crops with resistance to H. armigera may have potential consequences for the development and survival of C. chlorideae. Therefore, we studied the tritrophic interactions of C. chlorideae involving eight insect host species and six host crops under laboratory conditions. The recovery of H. armigera larvae following release was greater on pigeonpea and chickpea when compared with cotton, groundnut and pearl millet. The parasitism by C. chlorideae females was least with reduction in cocoon formation and adult emergence on H. armigera larvae released on chickpea. Host insects also had significant effect on the development and survival of C. chlorideae. The larval period of C. chlorideae was prolonged by 2-3 days on Spodoptera exigua, Mythimna separata and Achaea janata when compared with H. armigera, Helicoverpa assulta and Spodoptera litura. Maximum cocoon formation and adult emergence were recorded on H. armigera (82.4% and 70.5%, respectively) than on other insect hosts. These studies have important implications on development and survival of C. chlorideae on alternate insect hosts on non-transgenic crop plants, when there is paucity of H. armigera larvae on transgenic crops expressing Bt-toxins

    Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux

    Get PDF
    • …
    corecore