1,923 research outputs found
Figure-Ground Segmentation Using Multiple Cues
The theme of this thesis is figure-ground segmentation. We address the problem in the context of a visual observer, e.g. a mobile robot, moving around in the world and capable of shifting its gaze to and fixating on objects in its environment. We are only considering bottom-up processes, how the system can detect and segment out objects because they stand out from their immediate background in some feature dimension. Since that implies that the distinguishing cues can not be predicted, but depend on the scene, the system must rely on multiple cues. The integrated use of multiple cues forms a major theme of the thesis. In particular, we note that an observer in our real environment has access to 3-D cues. Inspired by psychophysical findings about human vision we try to demonstrate their effectiveness in figure-ground segmentation and grouping also in machine vision
The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation
The computationally demanding nature of radiative-hydrodynamical simulations
of stellar surface convection warrants an investigation of the sensitivity of
the convective structure and spectral synthesis to the numerical resolution and
dimension of the simulations, which is presented here. With too coarse a
resolution the predicted spectral lines tend to be too narrow, reflecting
insufficient Doppler broadening from the convective motions, while at the
currently highest affordable resolution the line shapes have converged
essentially perfectly to the observed profiles. Similar conclusions are drawn
from the line asymmetries and shifts. In terms of abundances, weak FeI and FeII
lines show a very small dependence (~0.02 dex) while for intermediate strong
lines with significant non-thermal broadening the sensitivity increases (~0.10
dex). Problems arise when using 2D convection simulations to describe an
inherent 3D phenomenon, which translates to inaccurate atmospheric velocity
fields and temperature and pressure structures. In 2D the theoretical line
profiles tend to be too shallow and broad compared with the 3D calculations and
observations, in particular for intermediate strong lines. In terms of
abundances, the 2D results are systematically about 0.1 dex lower than for the
3D case for FeI lines. Furthermore, the predicted line asymmetries and shifts
are much inferior in 2D. Given these shortcomings and computing time
considerations it is better to use 3D simulations of even modest resolution
than high-resolution 2D simulations.Comment: Accepted for A&
Numerical simulations of surface convection in a late M-dwarf
Based on detailed 2D and 3D numerical radiation-hydrodynamics (RHD)
simulations of time-dependent compressible convection, we have studied the
dynamics and thermal structure of the convective surface layers of a
prototypical late-type M-dwarf (Teff~2800K log(g)=5.0, solar chemical
composition). The RHD models predict stellar granulation qualitatively similar
to the familiar solar pattern. Quantitatively, the granular cells show a
convective turn-over time scale of ~100s, and a horizontal scale of 80km; the
relative intensity contrast of the granular pattern amounts to 1.1%, and
root-mean-square vertical velocities reach 240m/s at maximum. Deviations from
radiative equilibrium in the higher, formally convectively stable atmospheric
layers are found to be insignificant allowing a reliable modeling of the
atmosphere with 1D standard model atmospheres. A mixing-length parameter of
alpha=2.1 provides the best representation of the average thermal structure of
the RHD model atmosphere while alternative values are found when fitting the
asymptotic entropy encountered in deeper layers of the stellar envelope
alpha=1.5, or when matching the vertical velocity field alpha=3.5. The close
correspondence between RHD and standard model atmospheres implies that
presently existing discrepancies between observed and predicted stellar colors
in the M-dwarf regime cannot be traced back to an inadequate treatment of
convection in the 1D standard models. The RHD models predict a modest extension
of the convectively mixed region beyond the formal Schwarzschild stability
boundary which provides hints for the distribution of dust grains in cooler
(brown dwarf) atmospheres.Comment: 19 pages, 16 figures, accepted for publication in A&
A simulation of solar convection at supergranulation scale
We present here numerical simulations of surface solar convection which cover
a box of 303.2 Mm with a resolution of
31582, which is used to investigate the dynamics of scales
larger than granulation. No structure resembling supergranulation is present;
possibly higher Reynolds numbers (i.e. higher numerical resolution), or
magnetic fields, or greater depth are necessary. The results also show
interesting aspects of granular dynamics which are briefly presented, like
extensive p-mode ridges in the k- diagram and a ringlike distribution
of horizontal vorticity around granules. At large scales, the horizontal
velocity is much larger than the vertical velocity and the vertical motion is
dominated by p-mode oscillations.Comment: Contribution to the proceedings of the workshop entitled "THEMIS and
the new frontiers of solar atmosphere dynamics" (March 2001), 6 pages, to
appear in Nuovo Cimento
Hydrodynamical model atmospheres and 3D spectral synthesis
We discuss three issues in the context of three-dimensional (3D)
hydrodynamical model atmospheres for late-type stars, related to spectral line
shifts, radiative transfer in metal-poor 3D models, and the solar oxygen
abundance. We include a brief overview about the model construction, taking the
radiation-hydrodynamics code CO5BOLD (COnservative COde for the COmputation of
COmpressible COnvection in a BOx of L Dimensions with L=2,3) and the related
spectral synthesis package Linfor3D as examples.Comment: 6 pages, 2 figures, to appear in the Proceedings of the
ESO/Lisbon/Aveiro Workshop "Precision Spectroscopy in Astrophysics", eds. L.
Pasquini, M. Romaniello, N.C. Santos, and A. Correi
Line formation in convective stellar atmospheres. I. Granulation corrections for solar photospheric abundances
In an effort to estimate the largely unknown effects of photospheric
temperature fluctuations on spectroscopic abundance determinations, we have
studied the problem of LTE line formation in the inhomogeneous solar
photosphere based on detailed 2-dimensional radiation hydrodynamics simulations
of the convective surface layers of the Sun. By means of a strictly
differential 1D/2D comparison of the emergent equivalent widths, we have
derived "granulation abundance corrections" for individual lines, which have to
be applied to standard abundance determinations based on homogeneous 1D model
atmospheres in order to correct for the influence of the photospheric
temperature fluctuations. In general, we find a line strengthening in the
presence of temperature inhomogeneities as a consequence of the non-linear
temperature dependence of the line opacity. For many lines of practical
relevance, the magnitude of the abundance correction may be estimated from
interpolation in the tables and graphs provided with this paper. The
application of abundance corrections may often be an acceptable alternative to
a detailed fitting of individual line profiles based on hydrodynamical
simulations. The present study should be helpful in providing upper bounds for
possible errors of spectroscopic abundance analyses, and for identifying
spectral lines which are least sensitive to the influence of photospheric
temperature inhomogeneities.Comment: Accepted by A&
Solar Oscillations and Convection: II. Excitation of Radial Oscillations
Solar p-mode oscillations are excited by the work of stochastic,
non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the
expression for the radial mode excitation rate derived by Nordlund and Stein
(Paper I) using numerical simulations of near surface solar convection. We
first apply this expression to the three radial modes of the simulation and
obtain good agreement between the predicted excitation rate and the actual mode
damping rates as determined from their energies and the widths of their
resolved spectral profiles. We then apply this expression for the mode
excitation rate to the solar modes and obtain excellent agreement with the low
l damping rates determined from GOLF data. Excitation occurs close to the
surface, mainly in the intergranular lanes and near the boundaries of granules
(where turbulence and radiative cooling are large). The non-adiabatic pressure
fluctuations near the surface are produced by small instantaneous local
imbalances between the divergence of the radiative and convective fluxes near
the solar surface. Below the surface, the non-adiabatic pressure fluctuations
are produced primarily by turbulent pressure fluctuations (Reynolds stresses).
The frequency dependence of the mode excitation is due to effects of the mode
structure and the pressure fluctuation spectrum. Excitation is small at low
frequencies due to mode properties -- the mode compression decreases and the
mode mass increases at low frequency. Excitation is small at high frequencies
due to the pressure fluctuation spectrum -- pressure fluctuations become small
at high frequencies because they are due to convection which is a long time
scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue).
17 pages, 27 figures, some with reduced resolution -- high resolution
versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048
Phase-Dependent Properties of Extrasolar Planet Atmospheres
Recently the Spitzer Space Telescope observed the transiting extrasolar
planets, TrES-1 and HD209458b. These observations have provided the first
estimates of the day side thermal flux from two extrasolar planets orbiting
Sun-like stars. In this paper, synthetic spectra from atmospheric models are
compared to these observations. The day-night temperature difference is
explored and phase-dependent flux densities are predicted for both planets. For
HD209458b and TrES-1, models with significant day-to-night energy
redistribution are required to reproduce the observations. However, the
observational error bars are large and a range of models remains viable.Comment: 8 pages, 7 figures, accepted for publication in the Astrophysical
Journa
A Solution to the Protostellar Accretion Problem
Accretion rates of order 10^-8 M_\odot/yr are observed in young protostars of
approximately a solar mass with evidence of circumstellar disks. The accretion
rate is significantly lower for protostars of smaller mass, approximately
proportional to the second power of the stellar mass, \dot{M}_accr\propto M^2.
The traditional view is that the observed accretion is the consequence of the
angular momentum transport in isolated protostellar disks, controlled by disk
turbulence or self--gravity. However, these processes are not well understood
and the observed protostellar accretion, a fundamental aspect of star
formation, remains an unsolved problem. In this letter we propose the
protostellar accretion rate is controlled by accretion from the large scale gas
distribution in the parent cloud, not by the isolated disk evolution.
Describing this process as Bondi--Hoyle accretion, we obtain accretion rates
comparable to the observed ones. We also reproduce the observed dependence of
the accretion rate on the protostellar mass. These results are based on
realistic values of the ambient gas density and velocity, as inferred from
numerical simulations of star formation in self--gravitating turbulent clouds.Comment: 4 pages, 2 figures, ApJ Letters, in pres
- …