50 research outputs found

    Allele-specific copy number analysis of tumors

    Get PDF
    We present an allele-specific copy number analysis of the in vivo breast cancer genome. We describe a unique bioinformatics approach, ASCAT (allele-specific copy number analysis of tumors), to accurately dissect the allele-specific copy number of solid tumors, simultaneously estimating and adjusting for both tumor ploidy and nonaberrant cell admixture. This allows calculation of “ASCAT profiles” (genome-wide allele-specific copy-number profiles) from which gains, losses, copy number-neutral events, and loss of heterozygosity (LOH) can accurately be determined. In an early-stage breast carcinoma series, we observe aneuploidy (>2.7n) in 45% of the cases and an average nonaberrant cell admixture of 49%. By aggregation of ASCAT profiles across our series, we obtain genomic frequency distributions of gains and losses, as well as genome-wide views of LOH and copy number-neutral events in breast cancer. In addition, the ASCAT profiles reveal differences in aberrant tumor cell fraction, ploidy, gains, losses, LOH, and copy number-neutral events between the five previously identified molecular breast cancer subtypes. Basal-like breast carcinomas have a significantly higher frequency of LOH compared with other subtypes, and their ASCAT profiles show large-scale loss of genomic material during tumor development, followed by a whole-genome duplication, resulting in near-triploid genomes. Finally, from the ASCAT profiles, we construct a genome-wide map of allelic skewness in breast cancer, indicating loci where one allele is preferentially lost, whereas the other allele is preferentially gained. We hypothesize that these alternative alleles have a different influence on breast carcinoma development

    Integrated molecular profiles of invasive breast tumors and ductal carcinoma in situ (DCIS) reveal differential vascular and interleukin signaling

    Get PDF
    We use an integrated approach to understand breast cancer heterogeneity by modeling mRNA, copy number alterations, microRNAs, and methylation in a pathway context utilizing the pathway recognition algorithm using data integration on genomic models (PARADIGM). We demonstrate that combining mRNA expression and DNA copy number classified the patients in groups that provide the best predictive value with respect to prognosis and identified key molecular and stromal signatures. A chronic inflammatory signature, which promotes the development and/or progression of various epithelial tumors, is uniformly present in all breast cancers. We further demonstrate that within the adaptive immune lineage, the strongest predictor of good outcome is the acquisition of a gene signature that favors a high T-helper 1 (Th1)/cytotoxic T-lymphocyte response at the expense of Th2-driven humoral immunity. Patients who have breast cancer with a basal HER2-negative molecular profile (PDGM2) are characterized by high expression of protumorigenic Th2/humoral-related genes (24–38%) and a low Th1/Th2 ratio. The luminal molecular subtypes are again differentiated by low or high FOXM1 and ERBB4 signaling. We show that the interleukin signaling profiles observed in invasive cancers are absent or weakly expressed in healthy tissue but already prominent in ductal carcinoma in situ, together with ECM and cell-cell adhesion regulating pathways. The most prominent difference between low and high mammographic density in healthy breast tissue by PARADIGM was that of STAT4 signaling. In conclusion, by means of a pathway-based modeling methodology (PARADIGM) integrating different layers of molecular data from whole-tumor samples, we demonstrate that we can stratify immune signatures that predict patient survival

    Basal-like Breast cancer DNA copy number losses identify genes involved in genomic instability, response to therapy, and patient survival

    Get PDF
    Breast cancer is a heterogeneous disease with known expression-defined tumor subtypes. DNA copy number studies have suggested that tumors within gene expression subtypes share similar DNA Copy number aberrations (CNA) and that CNA can be used to further sub-divide expression classes. To gain further insights into the etiologies of the intrinsic subtypes, we classified tumors according to gene expression subtype and next identified subtype-associated CNA using a novel method called SWITCHdna, using a training set of 180 tumors and a validation set of 359 tumors. Fisher’s exact tests, Chi-square approximations, and Wilcoxon rank-sum tests were performed to evaluate differences in CNA by subtype. To assess the functional significance of loss of a specific chromosomal region, individual genes were knocked down by shRNA and drug sensitivity, and DNA repair foci assays performed. Most tumor subtypes exhibited specific CNA. The Basal-like subtype was the most distinct with common losses of the regions containing RB1, BRCA1, INPP4B, and the greatest overall genomic instability. One Basal-like subtype-associated CNA was loss of 5q11–35, which contains at least three genes important for BRCA1-dependent DNA repair (RAD17, RAD50, and RAP80); these genes were predominantly lost as a pair, or all three simultaneously. Loss of two or three of these genes was associated with significantly increased genomic instability and poor patient survival. RNAi knockdown of RAD17, or RAD17/RAD50, in immortalized human mammary epithelial cell lines caused increased sensitivity to a PARP inhibitor and carboplatin, and inhibited BRCA1 foci formation in response to DNA damage. These data suggest a possible genetic cause for genomic instability in Basal-like breast cancers and a biological rationale for the use of DNA repair inhibitor related therapeutics in this breast cancer subtype.Electronic supplementary materialThe online version of this article (doi:10.1007/s10549-011-1846-y) contains supplementary material, which is available to authorized users

    Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide

    Get PDF
    BACKGROUND: Doxorubicin and cyclophosphamide (AC) therapy is an effective treatment for early-stage breast cancer. Doxorubicin is a substrate for ABCB1 and SLC22A16 transporters. Cyclophosphamide is a prodrug that requires oxidation to 4-hydroxy-cyclophosphamide, which yields a cytotoxic alkylating agent. The initial oxidation is catalysed by cytochrome P450 enzymes including CYP2B6, CYP2C9, CYP2C19 and CYP3A5. Polymorphic variants of the genes coding for these enzymes and transporters have been identified, which may influence the systemic pharmacology of the two drugs. It is not known whether this genetic variation has an impact on the efficacy or toxicity of AC therapy. METHODS: Germ line DNA samples from 230 patients with breast cancer on AC therapy were genotyped for the following SNPs: ABCB1 C1236T, G2677T/A and C3435T, SLC22A16 A146G, T312C, T755C and T1226C, CYP2B6*2, *8, *9, *3, *4 and *5, CYP2C9*2 and *3, CYP3A5*3 and CYP2C19*2. Clinical data on survival, toxicity, demographics and pathology were collated. RESULTS: A lower incidence of dose delay, indicative of less toxicity, was seen in carriers of the SLC22A16 A146G, T312C, T755C variants. In contrast, a higher incidence of dose delay was seen in carriers of the SLC22A16 1226C, CYP2B6*2 and CYP2B6*5 alleles. The ABCB1 2677A, CYP2B6*2, CYP 2B6*8, CYP 2B6*9, CYP 2B6*4 alleles were associated with a worse outcome. CONCLUSION: Variant alleles in the ABCB1, SLC22A16 and CYP2B6 genes are associated with response to AC therapy in the treatment of breast cancer

    The influence of micrometastases on prognosis and survival in stage I-II colon cancer patients: the Enroute⊕ Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of lymph node metastases remains the most reliable prognostic predictor and the gold indicator for adjuvant treatment in colon cancer (CC). In spite of a potentially curative resection, 20 to 30% of CC patients testing negative for lymph node metastases (i.e. pN0) will subsequently develop locoregional and/or systemic metastases within 5 years. The presence of occult nodal isolated tumor cells (ITCs) and/or micrometastases (MMs) at the time of resection predisposes CC patients to high risk for disease recurrence. These pN0<sub>micro+ </sub>patients harbouring occult micrometastases may benefit from adjuvant treatment. The purpose of the present study is to delineate the subset of pN0 patients with micrometastases (pN0<sub>micro+</sub>) and evaluate the benefits from adjuvant chemotherapy in pN0<sub>micro+ </sub>CC patients.</p> <p>Methods/design</p> <p>EnRoute+ is an open label, multicenter, randomized controlled clinical trial. All CC patients (age above 18 years) without synchronous locoregional lymph node and/or systemic metastases (clinical stage I-II disease) and operated upon with curative intent are eligible for inclusion. All resected specimens of patients are subject to an <it>ex vivo </it>sentinel lymph node mapping procedure (SLNM) following curative resection. The investigation for micrometastases in pN0 patients is done by extended serial sectioning and immunohistochemistry for pan-cytokeratin in sentinel lymph nodes which are tumour negative upon standard pathological examination. Patients with ITC/MM-positive sentinel lymph nodes (pN0<sub>micro+</sub>) are randomized for adjuvant chemotherapy following the CAPOX treatment scheme or observation. The primary endpoint is 3-year disease free survival (DFS).</p> <p>Discussion</p> <p>The EnRoute+ study is designed to improve prognosis in high-risk stage I/II pN0 <sub>micro+ </sub>CC patients by reducing disease recurrence by adjuvant chemotherapy.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01097265">NCT01097265</a></p

    Low-risk susceptibility alleles in 40 human breast cancer cell lines

    Get PDF
    Background: Low-risk breast cancer susceptibility alleles or SNPs confer only modest breast cancer risks ranging from just over 1.0 to 1.3 fold. Yet, they are common among most populations and therefore are involved in the development of essentially all breast cancers. The mechanism by which the low-risk SNPs confer breast cancer risks is currently unclear. The breast cancer association consortium BCAC has hypothesized that the low-risk SNPs modulate expression levels of nearby located genes. Methods: Genotypes of five low-risk SNPs were determined for 40 human breast cancer cell lines, by direct sequencing of PCR-amplified genomic templates. We have analyzed expression of the four genes that are located nearby the low-risk SNPs, by using real-time RT-PCR and Human Exon microarrays. Results: The SNP genotypes and additional phenotypic data on the breast cancer cell lines are presented. We did not detect any effect of the SNP genotypes on expression levels of the nearby-located genes MAP3K1, FGFR2, TNRC9 and LSP1. Conclusion: The SNP genotypes provide a base line for functional studies in a well-characterized cohort of 40 human breast cancer cell lines. Our expression analyses suggest that a putative disease mechanism through gene expression modulation is not operative in breast cancer cell lines

    CpG-island methylation of the ER promoter in colorectal cancer: analysis of micrometastases in lymph nodes from UICC stage I and II patients

    Get PDF
    Patients with UICC stage II colorectal cancer (CRC) have a risk of approximately 20% to develop disease recurrence after tumour resection. The presence and significance of micrometastases for locoregional recurrence in these patients lacking histopathological lymph node involvement on routine stained HE sections is undefined. Oestrogen receptor (ER) promoter methylation has earlier been identified in CRC. Therefore, we evaluated the methylation status of the ER promoter in lymph nodes from 49 patients with CRC UICC stage I and II as a molecular marker of micrometastases and predictor of local recurrence. DNA from 574 paraffin-embedded lymph nodes was isolated and treated with bisulphite. For the detection of methylated ER promoter sequences, quantitative real-time methylation-specific PCR was used. Of the 49 patients tested, 15 (31%) had ER methylation-positive lymph nodes. Thirteen of those (86%) remained disease free and two (14%) developed local recurrence. In the resected lymph nodes of 34 of the 49 patients (69%), no ER promoter methylation could be detected and none of these patients experienced a local relapse. The methylation status of the ER promoter in lymph nodes of UICC stage I and II CRC patients may be a useful marker for the identification of patients at a high risk for local recurrence

    Expression levels of uridine 5'-diphospho-glucuronosyltransferase genes in breast tissue from healthy women are associated with mammographic density

    Get PDF
    Introduction Mammographic density (MD), as assessed from film screen mammograms, is determined by the relative content of adipose, connective and epithelial tissue in the female breast. In epidemiological studies, a high percentage of MD confers a four to six fold risk elevation of developing breast cancer, even after adjustment for other known breast cancer risk factors. However, the biologic correlates of density are little known. Methods Gene expression analysis using whole genome arrays was performed on breast biopsies from 143 women; 79 women with no malignancy (healthy women) and 64 newly diagnosed breast cancer patients, both included from mammographic centres. Percent MD was determined using a previously validated, computerized method on scanned mammograms. Significance analysis of microarrays (SAM) was performed to identify genes influencing MD and a linear regression model was used to assess the independent contribution from different variables to MD. Results SAM-analysis identified 24 genes differentially expressed between samples from breasts with high and low MD. These genes included three uridine 5'-diphospho-glucuronosyltransferase (UGT) genes and the oestrogen receptor gene (ESR1). These genes were down-regulated in samples with high MD compared to those with low MD. The UGT gene products, which are known to inactivate oestrogen metabolites, were also down-regulated in tumour samples compared to samples from healthy individuals. Several single nucleotide polymorphisms (SNPs) in the UGT genes associated with the expression of UGT and other genes in their vicinity were identified. Conclusions Three UGT enzymes were lower expressed both in breast tissue biopsies from healthy women with high MD and in biopsies from newly diagnosed breast cancers. The association was strongest amongst young women and women using hormonal therapy. UGT2B10 predicts MD independently of age, hormone therapy and parity. Our results indicate that down-regulation of UGT genes in women exposed to female sex hormones is associated with high MD and might increase the risk of breast cancer
    corecore