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We use an integrated approach to understand breast cancer het-
erogeneity by modeling mRNA, copy number alterations, micro-
RNAs, and methylation in a pathway context utilizing the pathway
recognition algorithm using data integration on genomic models
(PARADIGM). We demonstrate that combining mRNA expression
and DNA copy number classified the patients in groups that pro-
vide the best predictive value with respect to prognosis and
identified key molecular and stromal signatures. A chronic inflam-
matory signature, which promotes the development and/or pro-
gression of various epithelial tumors, is uniformly present in all
breast cancers. We further demonstrate that within the adaptive
immune lineage, the strongest predictor of good outcome is the
acquisition of a gene signature that favors a high T-helper 1 (Th1)/
cytotoxic T-lymphocyte response at the expense of Th2-driven
humoral immunity. Patients who have breast cancer with a basal
HER2-negative molecular profile (PDGM2) are characterized by high
expression of protumorigenic Th2/humoral-related genes (24–38%)
and a low Th1/Th2 ratio. The luminal molecular subtypes are again
differentiated by low or high FOXM1 and ERBB4 signaling.We show
that the interleukin signaling profiles observed in invasive cancers
are absent or weakly expressed in healthy tissue but already prom-
inent in ductal carcinoma in situ, together with ECM and cell-cell
adhesion regulating pathways. The most prominent difference be-
tween low and highmammographic density in healthy breast tissue
by PARADIGMwas that of STAT4 signaling. In conclusion, by means
of a pathway-based modeling methodology (PARADIGM) integrat-
ing different layers of molecular data from whole-tumor samples,
wedemonstrate thatwe can stratify immune signatures that predict
patient survival.
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Progression of malignant tumors as well as response to che-
motherapy and targeted therapy is increasingly appreciated

to be dependent on the immunological makeup of the host as
well as modulation of the immune system by therapeutic anti-
bodies. Cancer cells are surrounded by stroma consisting of non-
malignant hematopoietic and mesenchymal cells in the ECM.
It has been shown for many tumor types that the presence of
a lymphocytic infiltrate in different types of cancers is a positive
predictor of clinical outcome and that response to neoadjuvant
chemotherapy is increased in tumors with a prominent immune
infiltrate (1). Newly developed targeted therapies in breast can-
cer, such as trastuzumab, as well as in hematological malignan-
cies, such as rituximab and alemtuzumab, have been shown to
interact with immunological pathways, having an impact on re-

sponse and clinical outcome (2). It has been shown that not only
the presence but the composition of the lymphocytic infiltrate is
of prognostic significance (3). Although chronic inflammation is
clearly associated with a protumorigenic phenotype, the adaptive
immune response exerts more paradoxical roles during tumor
progression. Both CD8+ cytotoxic T cells (CTLs) and natural killer
(NK) cells harbor antitumorigenic properties and are the main
regulators of tumor immune surveillance (3, 4). Moreover, T-
helper 1 (Th1)-differentiated cells also contribute to tumor cell
clearance by favoring the differentiation of M1-polarized macro-
phages, which have tumoricidal properties (5). In contrast, al-
though B cells contribute to antitumor immunity in the acute
phase, chronic Th2-driven B-cell signaling is also protumorigenic
through its ability to recruit myeloid cells, including monocytes
and mast cells, and the polarization of macrophages to an M2
phenotype (6, 7). Based on these studies, the combination of high
levels of tumor-associated macrophages, robust Th2 responses,
and low CTL/NK cell infiltration was used to create an immune
cell signature in breast cancer to predict patient survival (reviewed
in 8). Regulatory T cells also promote tumorigenesis and metas-
tasis through their ability to suppress the tumor cytotoxic activity
of CTL and NK cells (9).
Whole-genome expression studies have been applied to clinical

specimens representing crude tumor and stromalmixtures (10–12)
as well as to microdissected fractions of each (13). Laser capture
microdissection studies of normal epithelium and stroma from
breast reduction mammoplasty or specimens obtained after sur-
gical treatment of patients with breast cancer allowed the creation
of an expression-based stromal-derived prognostic predictor
(SDPP) that stratifies disease outcome independent of standard
clinical prognostic factors (13). The SDPP revealed differential
immune responses as well as angiogenic and hypoxic responses,
highlighting the importance of stromal biology in tumor pro-
gression. In this study, we show that by applying a pathway-based
methodology to model the interactions among different layers of
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molecular data, we can identify tumors with a variety of immune
responses by means of the spectrum of cytokines expressed. These
profiles can be obtained from whole tumor samples andmirror the
leukocyte complexity in the tumors. To characterize each gene’s
activity level in a tumor in the context of a pathway and associated
clinical data, single genes as well as known interactions among
genes are studied. We use each gene’s integrated pathway levels
to identify and classify the tumors directly according to the most
deregulated pathways (across molecular data types) and then in-
vestigate the relationship of the newly detected clusters with the
previously described subclasses of breast cancer at various mo-
lecular levels. Furthermore, we show that these cytokine signa-
tures are associated with angiopoietin receptor Tie2-mediated
signaling, regulating angiogenesis and the FOXM1 pathway.

Results
Pathway Recognition Algorithm Using Data Integration on Genomic
Models for Classification of Invasive Ductal Carcinoma with Prog-
nostic Significance. Pathway recognition algorithm using data in-
tegration on genomic models (PARADIGM) analyses based on
mRNA expression and copy number alterations (CNAs) of the
MicroMetastases Project (MicMa) cohort identified the exis-
tence of five different clusters (Fig. 1A) and showed that com-
bining mRNA expression and DNA copy number (Fig. 1B) leads
to better discrimination of patients with respect to prognosis
than any of the molecular levels studied separately (Fig. S1). No
overall improvement of the prognostic value of the PARADIGM
clusters was observed by adding microRNA expression and DNA
methylation to the analysis, although when looking into the
specific pathways, both microRNA and methylated genes clearly
contributed to the observed pathway aberrations. The pathways
whose perturbations most strongly contributed to this classifica-
tion were those of Tie2 angiopoietin receptor-mediated signaling
and, most notably, tumor immunity (T-cell) and interleukin sig-
naling, where nearly every gene or complex in the pathway de-
viated from normal breast tissue. Most prominently seen were
IL-4, IL-6, IL-12, and IL-23 signaling. Other prominent pathways
involve endothelins; FoxM1 transcription, which is also deregu-
lated in the ovarian and glioblastoma TCGA (The Cancer Ge-
nome Atlas) datasets; and ERBB4, which was also previously
found to be deregulated in breast and ovarian cancers (14).
Based on this analysis, we have identified the following patient
groups with significantly different prognoses, which can be
roughly characterized as follows (Figs. 1–3):

PDGM1 = high FOXM1, high Th1/Th2 ratio, basal/ERBB2
PDGM2 = high FOXM1, low Th1/Th2 ratio, basal
PDGM3 = high FOXM1, innate immune genes, macrophage-
dominated, luminal
PDGM4 = high ERBB4, low angiopoietin signaling, luminal
PDGM5 = low FOXM1, low macrophage signature, luminal A

The most significantly differentially expressed pathways and
genes that comprise the different clusters are summarized in

Dataset S1 for both the discovery dataset (MicMa) and the vali-
dation datasets [cohort of Chin et al. (20) and Uppsala University
Hospital (UPPSALA) cohort]. To gain more insight into the key
pathways that contribute to the differences in patient outcome
between the five groups (PDGM1–5), we stratified the top 500
genes and/or pathways identified within each group based on their
biological function. We observed that tumors within the PDGM1
group displayed a significantly higher percentage of differentially
regulated genes within the immune lineage (44–60%) compared
with the PDGM2 group (17%) (Fig. 2A and Dataset S2). This is
consistent with the significantly poorer prognosis observed within
the PDGM2 patient group relative to PDGM1 patients. However,
the remaining groups (PDGM3–5) also exhibit prolonged survival
rates despite the fact that the immune response is underrepre-
sented in these tumors (7–30% of all differentially expressed
genes) (Fig. 2A). This suggests that both the nature of the immune
infiltrate and the frequency with which the immune response is
deregulated in tumors may contribute to the differential ability
of each signature to predict patient outcome. This is particularly
important, given the paradoxical role of the immune response
during cancer development as reviewed above. Therefore, we next
categorized each differentially expressed immune gene and/or
pathway into five specific functional groups: (i) antitumor im-
munity (Th1 cell, NK cell, CTL, and M1 macrophage), (ii) Th2/
humoral immunity, (iii) innate immunity/inflammatory response,
(iv) pan-T cell, and (v) pan-leukocyte genes. We observed that
all clusters associated with good outcome (PDGM1, PDGM3,
PDGM4, and PDGM5) were significantly enriched in genes as-
sociated with antitumor immunity (8–29%) at the expense of the
Th2/humoral immune response (3–20%) (Fig. 2B and Dataset
S3). This is consistent with the higher ratio of Th1/Th2 genes
in these groups (1.3- to 7-fold) (Fig. 2B). Conversely, the PDGM2
group, which is associated with poorer outcome, is significantly
enriched in Th2/humoral-related genes (24–38%) and only dis-
plays a Th1/Th2 ratio of 0.2 (Fig. 2B and Dataset S3). Surpris-
ingly, in the Chin dataset, the PDGM3 cluster was not enriched
in an antitumor immune signature as in the MicMa dataset but,
instead, displayed elevated expression of innate immune genes,
including those specific to macrophages. Interestingly, the innate/
inflammatory immune response, which confers protumorigenic
properties, is not significantly altered between clusters (Fig. 2B
and Dataset S2). Taken together, these analyses suggest that the
ratio between Th1- vs. Th2-driven immunity is the best predictor
of overall patient survival. Indeed, the cluster of patients pre-
senting with the worst outcome exhibit the highest percentage of
Th2 signaling, despite the fact that the overall immune response
is significantly underrepresented in this group.
Within the nonimmune genes, the most differentially expressed

ones are related to cell signaling, including tyrosine kinase, PI3K,
PKC, and TGF-β pathways (Dataset S2). We also observe an
elevated apoptotic signature, particularly within PDGM1 and
PDGM3 tumors. Despite the large number of nonimmune genes
within these groups, reaching up to 80% of all differentially ex-
pressed genes, the immune-related genes are able to discriminate
patients based on outcome.

PARADIGM Analysis of Normal Breast Tissue with High and Low
Mammographic Density Compared with Breast Carcinoma. To verify
that the observed immune signaling clusters do not exist in
normal breast tissue, we examined a cohort of healthy women
from the Norwegian breast cancer screening program using the
same experimental procedure [PARADIGM analysis of mRNA
expression data and array-comparative genomic hybridization
(CGH) data]. The cohort was stratified by low and high mam-
mographic density, shown as the top- and bottom-quartile %
density (Fig. 3 A and B). This analysis shows that the observed
interleukin signaling profiles are indeed very weak or even ab-
sent in healthy tissue, although prominently present already in
ductal carcinoma in situ (DCIS) (Fig. 3C) and invasive cancers
(Fig. 3D), where the PARADIGM signatures showed distorted
Tie2 angiopoietin receptor-mediated signaling, tumor immunity
(T-cell) and interleukin signaling, endothelins, and FoxM1 and
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Fig. 1. Distribution of identified PARADIGM clusters and survival in the dis-
covery (MicMa) dataset. (A) Each bar represents the size of each cluster. (B) Sur-
vival curves of the MicMa PARADIGM clusters after mapping to the Chin dataset.
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ERBB4 pathways. The most significant difference by a t statistic
between low- and high-density breast tissue assessed using
PARADIGM was observed for STAT4 signaling (P < 7.678e-
05, 2% false discovery rate) (Dataset S4).

PARADIGM for Classification in DCIS. Given the involvement of the
immune response in premalignant hyperplastic glands in mouse
models (15) and the massive differences in cytokine signaling
in invasive ductal carcinoma (IDC) observed here, we analyzed
a dataset of DCIS cases to find whether this strong immune re-
sponse and interleukin signaling in invasive tumors are present
in premalignant (preinvasive) stages as well. DCIS is a nonin-
vasive form of breast cancer in which some lesions are believed
to transit rapidly to IDC, whereas others remain unchanged.
We have previously studied gene expression patterns of 31 cases
of pure DCIS, 36 cases of pure invasive cancer, and 42 cases of
mixed diagnosis (invasive cancer with an in situ component) (16)
and observed heterogeneity in the transcriptomes in DCIS of
high histological grade, identifying a distinct subgroup of DCIS
with gene expression characteristics more similar to those of

advanced tumors. These groups correlated significantly to the
PARADIGM clusters described here (Dataset S4). The heat
map of the PARADIGM results for the patients with pure DCIS
is shown in Fig. 3C, and that for the entire UPPSALA cohort
[including patients with invasive ductal carcinoma (IDC) and
invasive lobular carcinoma (ILC)] is shown in Fig. 3D. None of
the pure DCIS tumors were of the PDGM2 type, characterized
by signaling typical for high macrophage activity (Fig. 3). In
agreement, experimental studies have demonstrated that mac-
rophages in primary mammary adenocarcinomas regulate late-
stage carcinogenesis as a result of their proangiogenic properties
(17, 18), as well as fostering pulmonary metastasis by providing
EGF to malignant mammary epithelial cells. Again, among the
top deregulated pathways identified by the PARADIGM analysis
in DCIS were those involving IL-2, IL-4, IL-6, IL-12, and IL-23
signaling (Dataset S2). In both datasets (DCIS and UPPSALA),
as well as in the MicMa cohort (Figs. 3 and 4), cytotoxic T-cell
signaling predominated, along with a large number of chemo-
kines that are known to recruit CD8+ T cells. For example, IL-12
is produced by antigen-presenting cells and stimulates IFN-γ
production from NK and T cells. IFN-γ signaling, which is ele-
vated in the PDGM1 cluster of the DCIS dataset, is produced
from the Th1, NK, and CTL cells and initiates an antitumor im-
mune response through its ability to polarize macrophages to
the M1 phenotype. In DCIS, another strong contributor (Dataset
S1) was NOX4, an oxygen-sensing NADPH oxidase that resem-
bles the protein responsible for the production of reactive oxygen
species (ROS) in neutrophils and granulocytes during a primary
immune response. Also, fibronectin 1 (FN1) and PDGF receptor
B (PDGFRB) appeared repeatedly together specifically in DCIS,
along with COL1A2, IL-12/IL-12 receptor/TYK2/JAK2/SPHK2,
ESR1, and KRT14. Phase I clinical trials have shown that the
clinical effect of trastuzumab (Herceptin) is potentiated by the
coadministration of IL-12 to patients with HER2-overexpressing
tumors, and this effect is mediated by the stimulation of IFN-γ
production in the NK cells (19).

Validation of the Classification of the PARADIGM Clusters in Three
Independent Datasets. The identification of the PARADIGM
clusters (Fig. 4A) was validated in three previously published
datasets: (i) the dataset of Chin et al. (20) (Fig. 4B), which had
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Fig. 2. (A) High Th1/Th2 ratio distinguishes a good outcome in the PDGM
clusters. The top 500 genes within each cluster (PDGM1–5) were classified
based on their biological function. The percentage of immune and nonimmune
genes in each cluster is shown within the discovery and validation datasets. (B)
Immune genes identified in A were divided into functional groups: (i) Th1/CTL/
NK cell, (ii) Th2/humoral immunity, and (iii) innate/inflammatory. The per-
centage of genes in each group, both within the discovery and validation
datasets, is shown. The Th1/Th2 ratio for each dataset is also represented.
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UPPSALA cohort). Each row shows the IPL of a gene or complex across all three
cohorts. The colored bar across the top shows the MicMa-derived PARADIGM
clusters, as in Fig. 1. Members of pathways of interest are labeled by their
pathway. Red represents an activated IPL, and blue represents a deactivated IPL.
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a higher frequency of estrogen receptor (ER)-negative and high-
grade tumors compared with the MicMa dataset; (ii) a dataset
from the University of North Carolina, Chapel Hill (UNC) (Fig.
4C); and (iii) the dataset of the UPPSALA cohort (16) (Fig. 4D).
The validity of the clusters was estimated in two ways: (a) func-
tional, comparing the type of pathways and their general pro-
portions in each cluster in both validation and discovery datasets
as described above and shown in Dataset S1, and (b) testing for
consistency of clusters across datasets. These approaches showed
that the PARADIGM subtypes were found to be reproducible in
the other datasets (P = 3e-13, P = 2e-19, P = 5e-9, for the Chin,
UNC, and UPPSALA datasets, respectively). Additionally, in
each dataset, the native PARADIGM subtypes correlated better
to the MicMa mapped types than to any other clinical feature or
subtyping derived from the dataset. All clusters were consistent
across datasets, except for cluster 3, which was different in both
silhouette plot and gene composition across the cohorts. In con-
clusion, these analyses show that the PARADIGM clusters are
largely stable across different breast cancer datasets, except for
PDGM 3, which was also characterized by a different immune
specter in the discovery and validation datasets.

PARADIGM Clusters and Survival. The cluster with poor survival in
the discovery dataset (MicMa), PDGM2, had poorer survival in
the Chin and UNC cohorts (Fig. 4E). The cluster (PDGM5)
enriched in luminal A breast cancer had the next best survival in
theMicMa dataset and the best survival in the other two validation
datasets. PDGM4 had a relative lower survival, which is in-
teresting because it also contains a lot of luminal A samples. The
most incoherent cluster was PDGM3, which was characterized by
good prognosis in the MicMa series but bad prognosis in the Chin
and UNC datasets. This is consistent with the high Th1/Th2 ratio
for PDGM3 in the MicMa dataset but the extremely low Th1/Th2
ratio for this cluster in the validation datasets (Fig. 2). In evalua-
tion of the consistency of the clusters, PDGM3 was also demon-
strated to be unstable, as shown by the silhouette graph (Fig. 4D).
The PDGM3 cluster had a significantly higher proportion of an-
titumor immune signature in the MicMa dataset and a lower
proportion in the Chin dataset, which displayed elevated expres-
sion of innate immune genes, including those specific to macro-
phages, which corresponds to the observed differences in survival.
These results suggest that the PARADIGM profiles, although
concordant with the molecular profiles derived by mRNA ex-
pression alone, may carry additional prognostic information. The

results, however, need to be combined with information about
treatment, for which there may be differences between Norway,
the United Kingdom, and the United States, because the patient’s
immune constitution has been shown to be critical for the outcome
of chemotherapy and targeted treatment.

PARADIGM Clusters and Clinical and Molecular Parameters in DCIS
and IDC. There was a considerable concordance between the im-
mune signaling classification proposed here and the well-estab-
lished classification by mRNA expression (luminal A, luminal B,
basal, ERBB2, normal-like) for both the MicMa and UPPSALA
cohorts (Dataset S5). Samples belonging to the basal/ERBB2
clusters were predominantly seen in the PDGM1 and pure basal
in PDGM2 (bad prognosis) clusters [i.e., identification of a subset
of basal tumors with a very bad prognosis (PDGM2)]. Luminal A
samples were predominantly seen in the PDGM3 and PDGM4
(best prognosis in MicMa) clusters. The distribution of the cor-
relations to the centroids for each molecular subtype (luminal
A, luminal B, basal, ERBB2, and normal-like) is shown for
each PDGM subtype in Fig. S2. The correlations to the basal
centroid are positive for PDGM1 and PDGM2 and negative for
the other three PDGM clusters. The correlations to the centroids
in ERBB2 and to the luminal cluster in PDGM2 are also negative,
suggesting that these tumors are of the triple negative-like type.
PARADIGM clustering offers a rather significant distinction
between two clusters within luminal A breast cancer (PDGM3
and PDGM4) and luminal B breast cancer (PDGM4) clusters.
Accordingly, association with the ER status and TP53 mutation
status was observed in both datasets. No associations with stage,
grade, Ki67, or Her2 staining were observed in DCIS, but an
association with Ki67 was seen in IDC (Dataset S5).

PARADIGM Clusters and Fraction of Nontumoral Infiltrating Cells. To
exclude the possibility that the observed classification may be
attributable to different proportions of infiltrating noncancerous
cells, we tested the degree of nonaberrant cell infiltration in the
separate PARADIGM clusters in three of the datasets (MicMa,
UNC, and UPPSALA). To obtain a more precise estimation of
the nonaberrant cell admixture, we applied our recently devel-
oped allele-specific copy number analysis of tumors (ASCAT)
tool (21) to obtain nonaberrant cell infiltration estimates from
SNP-CGH data of the MicMa, UNC, and UPPSALA datasets
(Fig. S3). By means of aggregation of ASCAT profiles across our
series, we were able to see a deviation only for the PDGM1 cluster
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clusters, as in Fig. 1.Members of pathways of interest are labeledby their pathway. Red represents an activated IPL, andblue represents a deactivated IPL. (D) Under
each heat map, a silhouette plot illustrates the ratio between distance to centroid of belonging cluster vs. distance to all other members. (E) Survival curves.
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in all three datasets (Fig. S2 and Dataset S6). This cluster had a
significantly lower fraction of tumor cells, which may represent
a higher proportion of infiltrating lymphocytes, in concordance
with the PARADIGM signatures. This cluster is also enriched
for ERBB2-like tumors, which are known to be characterized by
large leukocyte infiltration. For the remaining PARADIGM
clusters, no such association with the amount of infiltrating cells
was observed (Dataset S6). This confirms that the PARADIGM
clustering is not merely following the amount of infiltrating cells
but, instead, is driven by the differences in quality rather than
quantity of the infiltrating lymphocytes, as detailed above.

Discussion
To understand how genomic changes disturb distinct biological
functions that can explain tumor phenotypes and make tumors
vulnerable to targeted treatment, we need an understanding of
perturbations at a pathway level. PARADIGM (14) identifies
active pathways in subsets of patients that are indistinguishable if
genes are studied at a single level. The method uses techniques
from probabilistic graphical models to integrate functional
genomics data onto a known pathway structure. It has previously
been applied to analysis of copy number and mRNA expression
data from the TCGA glioblastoma and ovarian datasets (14).
PARADIGM analysis can also be used to connect genomic
alterations at multiple levels, such as DNA methylation or copy
number and mRNA or microRNA expression, and can thus in-
tegrate any number of omics layers of data in each individual
sample. Although DNA methylation and microRNA expression
contribute to the deregulated pathways and seem to have a dis-
tinct contribution to the prognosis and molecular profiles of
breast cancer in the MicMa cohort (22–24), we did not find im-
provement in the prognostic value of the PARADIGM clusters
by adding these two molecular profile types. One explanation for
this is that the prognostic value of microRNA and DNA meth-
ylation analyses is recapitulated by mRNA expression because
of their high correlation. However, this hypothesis requires fur-
ther analysis, because the choice of analysis platforms (e.g., lim-
ited Illumina 1505 CpG cancer panel for methylation) and our
limited knowledge of true microRNA targets may be the factors
limiting our ability to measure and effectively model microRNA
and DNA methylation information comprehensively.
The integrated analysis of deregulated pathways described

here points to the fact that patients with breast cancer who have
a basal HER2-negative molecular profile (PDGM2) are charac-
terized by high expression of protumorigenic Th2/humoral-related
genes (24–38%) and a low Th1/Th2 ratio. The luminal molecular
subtypes are again differentiated by low or high FOXM1 and
ERBB4 signaling. In DCIS, the deregulated genes/pathways seem
to contribute to functions in the ECM, cell-cell interaction, fi-
brosis, and keratinization. For instance, FN1 belongs to a family of
high-molecular-weight glycoproteins present on cell surfaces, in
extracellular fluids, in connective tissues, and in basement mem-
branes. Fibronectins interact with other ECM proteins and cel-
lular ligands, such as collagen, fibrin, and integrins. Fibronectins
are involved in adhesive andmigratory processes of cells. PDGFR,
together with the EGF receptor (EGFR), signals through EGFRs
and PDGFRs, which are important receptor tyrosine kinases in
breast cancer. Importantly, PDGFR, found here to be overex-
pressed in certain DCIS cases, is a target of sunitinib (25) and a
secondary target of imatinib mesylate (Gleevec) (26). Contrary
to the immunostimulatory role of trastuzumab (Herceptin), which
is mediated by increased IFN-γ production, imatinib was shown
to inhibit IFN-γ production by TCR-activated CD4+ T cells (2).
These observations are of interest for our argument to the degree
that they illuminate the interaction between growth factor re-
ceptors presented on the surface of DCIS and malignant cells
and immune constitution. It was shown that stimulatory auto-
antibodies to PDGFR appeared to trigger an intracellular loop
involving Ras, ERK1/ERK2, andROS that leads to increased type
I collagen expression (12). This is in line with COL1A2 expression,
also observed as deregulated in DCIS in our study.

In the cluster with the worst prognosis in IDC, PDGM2, IL-4
signaling is strongly deregulated in conjunction with STAT6,
which has been shown to prevent growth inhibition in human
breast cancer cells (27). Also analyzing the top 500 genes, the
IL-4 signature is the highest in PDGM2, which fits with the in-
creased number of B-cell genes. IL-4 signaling has also been
shown to promote mast cell activation, which can support greater
tumor growth (28). Conversely, in PDGM5, macrophage acti-
vation is decreased and NK cell activity is increased because of
IL-23 signaling. A cancer-dependent polarization of the immune
response toward Th2- and B-cell recruitment on one side and
Th1-cell proliferation on the other has been discussed (15). IL-4
is a Th2-derived cytokine that stimulates B-cell differentiation
and chronic inflammation in cancer cells. Th2 cells also secrete
IL-10, which mediates immunosuppression in these cancers. This
immunosuppression was shown to occur predominantly in basal
and ERBB2 breast cancers.

FOXM1 Transcription. FOXM1 is a key regulator of cell cycle
progression, and its endogenous FOXM1 expression oscillates
according to the phases of the cell cycle. FOXM1, confirmed as
a human protooncogene, is found up-regulated in the majority of
solid human cancers, including liver, breast, lung, prostate, cervix,
uterus, colon, pancreas, brain, and basal cell carcinoma, which is
the most common human cancer. FOXM1 is thought to promote
oncogenesis through its multiple roles in cell cycle and chromo-
somal/genomic maintenance (29). Aberrant up-regulation of
FOXM1 in primary human skin keratinocytes can directly induce
genomic instability in the form of loss of heterozygosity and
CNAs (30). A recent report showed that aberrant up-regulation
of FOXM1 in adult human epithelial stem cells induces a pre-
cancer phenotype in a 3D-organotypic tissue regeneration sys-
tem, a condition similar to human hyperplasia (31). FoxM1
affects both G1/S and G2/M by regulating the G1/S transition to
diminish nuclear levels of the inhibitory cell cycle regulators
p21Cip1 and p27Kip1 and by activating Cdc25A transcription.
During the G2/M transition, FoxM1 activates transcription of
Cdc25B, which is essential for activation of the Cdk1–cyclin-B
complex 4, and FoxM1 is also required for the expression of
Aurora B kinase and Polo-like kinase (Plk1 and Plk2). In addi-
tion, Laoukili et al. (32) identified a transcriptional target of
FoxM1, centromere protein F (CENP-F), that is required for
proper mitotic spindle checkpoint function and chromosome
stability. We see clearly two groups of patients with breast cancer
who have high and low activity of this pathway broken mainly
according to interleukin signaling activity. Fig. S4 illustrates the
opposite activation modus of this pathway (red represents acti-
vated vs. blue represents inactivated) for cluster PDGM3, as
opposed to the rest of the clusters with worse survival, and the
molecular levels that contribute to it (mRNA, CNA, microRNA,
or DNA methylation according to the shape of the figures).
Down-regulation of MMP2 in PDGM3 is attributable to DNA
methylation, whereas in the rest of the tumors, it is attributable to
DNA deletion. Of the microRNAs, hsa-let7-b was up-regulated
in PDGM3 and down-regulated in the rest of the tumors, com-
plementary to its target, the aurora kinase B (AURKB). Both
DNA amplification and mRNA expression were seen as causes of
deregulation of expression.

Angiopoietin Receptor Tie2-Mediated Signaling. The angiopoietin
family plays an important role in angiogenesis during the de-
velopment and growth of human cancers. Ang2 functions in an-
giogenesis to antagonize Ang1-mediated Tie2 signaling, which is
critical for blood vessel maturation and stabilization. Ang2 mod-
ulates angiogenesis in a cooperative manner with another impor-
tant angiogenic factor, VEGF A (33). Recent data suggest more
complicated roles for Ang2 in angiogenesis in invasive phenotypes
of cancer cells during progression of human cancers (33, 34).
Certain angiopoietin family members can activate Tie1 (e.g., Ang1
induces Tie1 phosphorylation in endothelial cells) (34). Tie1
phosphorylation is Tie2-dependent (34). Ang1-mediatedAKT and
ERK phosphorylation is predominantly Tie2-mediated, and Tie1
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down-regulates this pathway. Thus, the main role for Tie1 is to
modulate blood vessel morphogenesis because of its ability to
down-regulate Tie2-driven signaling and endothelial survival. Both
Tie2-mediated signaling as well as VEGF receptor 1 (VEGFR1)-
and VEGFR2-mediated signaling and specific signals were ob-
served in this dataset.
ERBB4 contributes to proliferation and cell movement in

mammary morphogenesis and the directional cell movements
of Erbb4-expressing mammary primordial epithelia while pro-
moting mammary cell fate. Most reports are consistent with a
role for ErbB4 in reversing growth stimuli triggered by other
ErbB family members during puberty; however, significant as-
sociation of survival with ERBB4 expression has not been con-
firmed (35).

Conclusion
Breast cancer development is characterized by significant in-
creases in the presence of both innate and adaptive immune cells,
with B cells, T cells, and macrophages representing the most
abundant leukocytes present in neoplastic stroma (3). High Ig
levels in tumor stroma (and serum) and increased presence of
extrafollicular B cells and T-regulatory cells as well as high ratios
of CD4/CD8 or Th2/Th1 T lymphocytes in primary tumors or in
lymph nodes have been shown to correlate with tumor grade,
stage, and overall patient survival (36). Some leukocytes exhibit
antitumor activity, including CTLs and NK cells (37). Other leu-
kocytes, such as mast cells, B cells, dendritic cells, granulocytes,
and macrophages, exhibit more bipolar roles, through their ca-
pacity to either hamper or potentiate tumor progression (38). In
this study, we show that the perturbation in the immune response
(TCR) and interleukin signaling, including IL-4, IL-6, IL-12, and
IL-23, can lead to classification of subclasses with prognostic
value.We provide evidence that these events aremirrored in high-

throughput molecular data and interfere strongly with molecular
subclassification of breast tumors. Given the increasing impor-
tance of immune constitution for the success of chemotherapy and
targeted treatment, this additional information may prove useful
in the clinic in the future.

Materials and Methods
MicMa Molecular Profiling. The analysis was conducted on approximately 110
breast carcinomaswithmRNA expression from anAgilent Technologieswhole
human genome, 4 × 44-K, one-color oligo array, CNAs from an Illumina
Human-1 109-K BeadChip array (21), microRNA from an Agilent Technologies
Human miRNA Microarray Kit (V2), and DNA methylation profiling from a
GoldenGate Methylation Cancer Panel I (Illumina). Data were analyzed
according to the manufacturers’ protocols and as detailed in SI Materials
and Methods.

Data Preprocessing, PARADIGM, Clustering, and Survival Analysis. Briefly,
pathway files were from the Pathway Interaction Database (40), and
PARADIGM preprocessing and parameters were as previously described.
Clustering was performed by HOPACH 2.10 (41) and in R version 2.12 (www.
r-project.org/), as were survival analysis and cluster enrichments. Full details
are provided in SI Materials and Methods.

ACKNOWLEDGMENTS. This study was supported by Norwegian Research
Council Grants 183621/S10 and 175240/S10 (to V.N.K. and A.-L.B.-D.), Norwe-
gian Cancer Society Grants PK80108002 and PK60287003, and the Radium
Hospital Foundation. J.U.-S. acknowledges funding from Canadian Institutes
of Health Research Operating Grant MOP-111143 and is also the recipient
of a Canadian Institutes of Health Research New Investigator Salary support
award. P.V.L. is a postdoctoral researcher of the Research Foundation-
Flanders. C.M.P. was supported by the National Cancer Institute Breast
Specialized Program of Research Excellence (SPORE) program (Grant
P50-CA58223), by National Institutes of Health Grant RO1-CA138255, and
by the Breast Cancer Research Foundation.

1. Ladoire S, et al. (2011) In situ immune response after neoadjuvant chemotherapy for
breast cancer predicts survival. J Pathol 224:389–400.

2. Stagg J, et al. (2011) Anti-ErbB-2 mAb therapy requires type I and II interferons and
synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci USA 108:
7142–7147.

3. DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune
response: Crosstalk between adaptive and innate immune cells during breast cancer
progression. Breast Cancer Res 9:212.

4. Bannard O, Kraman M, Fearon DT (2009) Secondary replicative function of CD8+ T
cells that had developed an effector phenotype. Science 323:505–509.

5. Mellor AL, Munn DH (2008) Creating immune privilege: Active local suppression that
benefits friends, but protects foes. Nat Rev Immunol 8:74–80.

6. de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by
chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–423.

7. DeNardo DG, et al. (2009) CD4(+) T cells regulate pulmonary metastasis of mammary
carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102.

8. De Palma M, Lewis CE (2011) Cancer: Macrophages limit chemotherapy. Nature 472:
303–304.

9. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell
140:883–899.

10. Perou CM, et al. (2000) Molecular portraits of human breast tumours. Nature 406:
747–752.

11. Sørlie T, et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor
subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874.

12. Bergamaschi A, et al. (2008) Extracellular matrix signature identifies breast cancer
subgroups with different clinical outcome. J Pathol 214:357–367.

13. Finak G, et al. (2008) Stromal gene expression predicts clinical outcome in breast
cancer. Nat Med 14:518–527.

14. Vaske CJ, et al. (2010) Inference of patient-specific pathway activities from multi-di-
mensional cancer genomics data using PARADIGM. Bioinformatics 26:i237–i245.

15. Ursini-Siegel J, et al. (2010) Receptor tyrosine kinase signaling favors a protumori-
genic state in breast cancer cells by inhibiting the adaptive immune response. Cancer
Res 70:7776–7787.

16. Muggerud AA, et al. (2010) Molecular diversity in ductal carcinoma in situ (DCIS) and
early invasive breast cancer. Mol Oncol 4:357–368.

17. Lin EY, Pollard JW (2007) Tumor-associated macrophages press the angiogenic switch
in breast cancer. Cancer Res 67:5064–5066.

18. Lin EY, et al. (2007) Vascular endothelial growth factor restores delayed tumor pro-
gression in tumors depleted of macrophages. Mol Oncol 1:288–302.

19. Bekaii-Saab TS, et al. (2009) A phase I trial of paclitaxel and trastuzumab in combi-
nation with interleukin-12 in patients with HER2/neu-expressing malignancies. Mol
Cancer Ther 8:2983–2991.

20. Chin SF, et al. (2007) Using array-comparative genomic hybridization to define mo-
lecular portraits of primary breast cancers. Oncogene 26:1959–1970.

21. Van Loo P, et al. (2010) Allele-specific copy number analysis of tumors. Proc Natl Acad
Sci USA 107:16910–16915.

22. Naume B, et al. (2007) Presence of bone marrow micrometastasis is associated with
different recurrence risk within molecular subtypes of breast cancer. Mol Oncol 1:
160–171.

23. Enerly E, et al. (2011) miRNA-mRNA integrated analysis reveals roles for miRNAs in
primary breast tumors. PLoS ONE 6:e16915.

24. Rønneberg JA, et al. (2011) Methylation profiling with a panel of cancer related
genes: Association with estrogen receptor, TP53 mutation status and expression
subtypes in sporadic breast cancer. Mol Oncol 5:61–76.

25. Fratto ME, et al. (2010) New perspectives: Role of sunitinib in breast cancer. Clin Ter
161:475–482.

26. Weigel MT, et al. (2010) In vitro effects of imatinib mesylate on radiosensitivity and
chemosensitivity of breast cancer cells. BMC Cancer 10:412.

27. Gooch JL, Christy B, Yee D (2002) STAT6 mediates interleukin-4 growth inhibition in
human breast cancer cells. Neoplasia 4:324–331.

28. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system
during cancer development. Nat Rev Cancer 6:24–37.

29. Wonsey DR, Follettie MT (2005) Loss of the forkhead transcription factor FoxM1
causes centrosome amplification and mitotic catastrophe. Cancer Res 65:5181–5189.

30. Teh MT, Gemenetzidis E, Chaplin T, Young BD, Philpot MP (2010) Upregulation of
FOXM1 induces genomic instability in human epidermal keratinocytes.Mol Cancer 9:45.

31. Gemenetzidis E, et al. (2010) Induction of human epithelial stem/progenitor expan-
sion by FOXM1. Cancer Res 70:9515–9526.

32. Laoukili J, et al. (2005) FoxM1 is required for execution of the mitotic programme and
chromosome stability. Nat Cell Biol 7:126–136.

33. Hashizume H, et al. (2010) Complementary actions of inhibitors of angiopoietin-2 and
VEGF on tumor angiogenesis and growth. Cancer Res 70:2213–2223.

34. Yuan HT, et al. (2007) Activation of the orphan endothelial receptor Tie1 modifies
Tie2-mediated intracellular signaling and cell survival. FASEB J 21:3171–3183.

35. Sundvall M, et al. (2008) Role of ErbB4 in breast cancer. J Mammary Gland Biol
Neoplasia 13:259–268.

36. Bates GJ, et al. (2006) Quantification of regulatory T cells enables the identification of high-
risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380.

37. Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer im-
munoediting. Nat Rev Immunol 6:836–848.

38. de Visser KE, Coussens LM (2006) The inflammatory tumor microenvironment and its
impact on cancer development. Contrib Microbiol 13:118–137.

39. Wiedswang G, et al. (2003) Detection of isolated tumor cells in bone marrow is an
independent prognostic factor in breast cancer. J Clin Oncol 21:3469–3478.

40. Schaefer CF, et al. (2009) PID: the Pathway Interaction Database. Nucleic Acids Res 37
(Database issue):D674–D679.

41. van der Laan MJ, Pollard KS (2003) A new algorithm for hybrid hierarchical clustering
with visualization and the bootstrap. J Stat Plan Inference 117:275–303.

Kristensen et al. PNAS | February 21, 2012 | vol. 109 | no. 8 | 2807

M
ED

IC
A
L
SC

IE
N
CE

S
SP

EC
IA
L
FE
A
TU

RE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1108781108/-/DCSupplemental/pnas.201108781SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1108781108/-/DCSupplemental/pnas.201108781SI.pdf?targetid=nameddest=STXT
http://www.r-project.org/
http://www.r-project.org/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1108781108/-/DCSupplemental/pnas.201108781SI.pdf?targetid=nameddest=STXT

