731 research outputs found

    QuateXelero : an accelerated exact network motif detection algorithm

    Get PDF
    Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain more knowledge about these networks’ structure and function. However, this task is very computationally demanding, because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the algorithm from scratch based on the input network

    Von der (Un-)Möglichkeit ausgeglichener Haushalte

    Get PDF
    Staatsverschuldung wird hier als ein negativer externer Effekt verstanden, den Politiker ausĂŒben, um die Kosten ihres politischen Angebots zu senken und somit im politischen Wettbewerb bestehen zu können. Die Gegebenheiten des politischen Wettbewerbs und die Möglichkeit diesen externen Effekt auszuĂŒben, versetzen die Politiker in eine Dilemma-Situation, welche die Vermeidung von Defiziten, also eine Zusammenarbeit zum allgemeinen Vorteil, unmöglich macht und zwangslĂ€ufig zu immer neuen Defiziten fĂŒhrt. Ausnahmen ergeben sich nur, wenn die Kosten der Staatsverschuldung internalisiert werden. Da eine vollstĂ€ndige Internalisierung ĂŒber den Markt aber in der Regel nicht gelingen kann, wird eine erfolgreiche BekĂ€mpfung des Verschuldungsproblems nur mit Hilfe von Regulierung gelingen. Wir plĂ€dieren daher fĂŒr eine Kombination aus Intensivierung des Wettbewerbs, um eine verstĂ€rkte Internalisierung der negativen externen Effekte zu erreichen, und Kanalisierung des Wettbewerbs, also Regulierung, um den Einsatz von Staatsverschuldung zu begrenzen und die Dilemmastruktur aufzubrechen. --

    Modulation of the Work Function by the Atomic Structure of Strong Organic Electron Acceptors on H-Si(111)

    Get PDF
    Advances in hybrid organic/inorganic architectures for optoelectronics can be achieved by understanding how the atomic and electronic degrees of freedom cooperate or compete to yield the desired functional properties. Here we show how work-function changes are modulated by the structure of the organic components in model hybrid systems. We consider two cyano-quinodimethane derivatives (F4-TCNQ and F6-TCNNQ), which are strong electron-acceptor molecules, adsorbed on H-Si(111). From systematic structure searches employing range-separated hybrid HSE06 functional including many body van der Waals contributions, we predict that despite their similar composition, these molecules adsorb with significantly different densely-packed geometries in the first layer, due to strong intermolecular interaction. F6-TCNNQ shows a much stronger intralayer interaction (primarily due to van der Waals contributions) than F4-TCNQ in multilayered structures. The densely-packed geometries induce a large interface-charge rearrangement that result in a work-function increase of 1.11 and 1.76 eV for F4-TCNQ and F6-TCNNQ, respectively. Nuclear fluctuations at room temperature produce a wide distribution of work-function values, well modeled by a normal distribution with {\sigma}=0.17 eV. We corroborate our findings with experimental evidence of pronounced island formation for F6-TCNNQ on H-Si(111) and with the agreement of trends between predicted and measured work-function changes

    Recrystallization of MBE‐Grown MoS2 Monolayers Induced by Annealing in a Chemical Vapor Deposition Furnace

    Get PDF
    A systematic study of MoS2 grown by a combination of physical vapor deposition and post-growth annealing treatment has been conducted. Hereby, MoS2 thin films with thicknesses between 1 and 2 layers are first grown on sapphire by molecular beam epitaxy at different growth temperatures and then transferred to S environment inside a tube furnace for an annealing process. Depending on the growth temperature, the as-grown layers are either amorphous or form a crystalline structure composed of closely packed nanometer-size grains. The annealing process leads to recrystallization of these layers significantly increasing the size of the MoS2 crystalline domains to the range of 50–100 nm. While the originally amorphous layer displays rotational domains after annealing, recrystallization of samples grown at high temperatures yields single crystalline layers. All samples display an increase of the crystallite dimension, which is accompanied by the disappearance of the defect-related peaks in the Raman spectra, sharpening of the excitonic signatures in absorption, and strong enhancement of the photoluminescence yield. The results represent a promising way to combine advantages of physical vapor deposition and a post-growth annealing in a chemical vapor deposition furnace toward fabrication of wafer-scale single crystalline transition metal dichalcogenide mono- and multilayer films on non-van der Waals substrates.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Stark Effect of Hybrid Charge Transfer States at Planar ZnO/Organic Interfaces

    Full text link
    We investigate the bias-dependence of the hybrid charge transfer state emission at planar heterojunctions between the metal oxide acceptor ZnO and three donor molecules. The electroluminescence peak energy linearly increases with the applied bias, saturating at high fields. Variation of the organic layer thickness and deliberate change of the ZnO conductivity through controlled photo-doping allow us to confirm that this bias-induced spectral shifts relate to the internal electric field in the organic layer rather than the filling of states at the hybrid interface. We show that existing continuum models overestimate the hole delocalization and propose a simple electrostatic model in which the linear and quadratic Stark effects are explained by the electrostatic interaction of a strongly polarizable molecular cation with its mirror image

    Y‐Stabilized ZrO2 as a Promising Wafer Material for the Epitaxial Growth of Transition Metal Dichalcogenides

    Get PDF
    Y-stabilized ZrO2 (YSZ) as a promising single-crystal wafer material for the epitaxial growth of transition metal dichalcogenides applicable for both physical (PVD) and chemical vapor deposition (CVD) processes is used. MoS2 layers grown on YSZ (111) exhibit sixfold symmetry and in-plane epitaxial relationship with the wafer of (1010) MoS2 || (211) YSZ. The PVD-grown submonolayer thin films show nucleation of MoS2 islands with a lateral size of up to 100 nm and a preferential alignment along the substrate step edges. The layers exhibit a strong photoluminescence yield as expected for the 2H-phase of MoS2 in a single monolayer limit. The CVD-grown samples are composed of triangular islands of several micrometers in size in the presence of antiparallel domains. The results represent a promising route toward fabrication of wafer-scale single-crystalline transition metal dichalcogenide layers with a tunable layer thickness on commercially available wafers.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Interreg http://dx.doi.org/10.13039/100013276Peer Reviewe

    Understanding the Double Doping of Organic Semiconductors Via State Energy Renormalization upon Charging

    Get PDF
    The double ionization of molecular dopants enables the doping efficiency (free charges per dopant molecule) to rise above 100%. However, the current models of doped organic semiconductors based on Fermi–Dirac statistics fail to explain the double ionization of dopants and also the analogous situation of bipolaron formation on a host polymer. Here, we address this shortcoming by considering the renormalization of the state energies upon electron transfer between host and p-dopant. We vary the model parameters─the reorganization energy and evolutions of ionization energies and electron affinities upon charging─and plot the fractions of doubly ionized, singly ionized, and neutral species. The model shows good agreement with experimental measurements of doubly ionized p-dopants and bipolarons on a p-doped polymer. With these insights, we suggest that the state energy renormalization upon charging is the key parameter to be minimized for double ionization of dopants or maximized to avoid formation of bipolarons on the host.Peer Reviewe

    Space Charge Transfer in Hybrid Inorganic/Organic Systems

    Full text link
    We discuss density functional theory calculations of hybrid inorganic/organic systems (HIOS) that explicitly include the global effects of doping (i.e. position of the Fermi level) and the formation of a space-charge layer. For the example of tetrafluoro-tetracyanoquinodimethane (F4TCNQ) on the ZnO(0001ˉ\bar{1}) surface we show that the adsorption energy and electron transfer depend strongly on the ZnO doping. The associated work function changes are large, for which the formation of space-charge layers is the main driving force. The prominent doping effects are expected to be quite general for charge-transfer interfaces in HIOS and important for device design
    • 

    corecore