
QuateXelero: An Accelerated Exact Network Motif
Detection Algorithm
Sahand Khakabimamaghani1, Iman Sharafuddin1, Norbert Dichter2, Ina Koch2, Ali Masoudi-Nejad1*

1 Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran, 2 Molecular Bioinformatics, Johann

Wolfgang Goethe-University, Frankfurt am Main, Germany

Abstract

Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain
more knowledge about these networks’ structure and function. However, this task is very computationally demanding,
because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-
complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection
method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif
detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is
based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model
networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest
existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the
algorithm from scratch based on the input network.

Citation: Khakabimamaghani S, Sharafuddin I, Dichter N, Koch I, Masoudi-Nejad A (2013) QuateXelero: An Accelerated Exact Network Motif Detection
Algorithm. PLoS ONE 8(7): e68073. doi:10.1371/journal.pone.0068073

Editor: Sergio Gómez, Universitat Rovira i Virgili, Spain

Received January 2, 2013; Accepted May 23, 2013; Published July 18, 2013

Copyright: � 2013 Khakabimamaghani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: No current external funding sources for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: amasoudin@ibb.ut.ac.ir

Introduction

Milo et al. [1] define ‘‘Network Motifs’’ as connectivity-patterns

(subgraphs) in a particular network that occur much more often

than they do in random networks. These patterns can be seen as

the building blocks of networks. The importance of network motifs

arises from the fact that they are closely related to many network

properties such as structure, function, and robustness.

Since the introduction of this concept by Milo et al. in a seminal

paper [1], a considerable number of researches have been

conducted on this subject. Some of these researches focused on

the biological aspects [2] [3] [4] and others concentrated on

computational facets [5] [6] [7] [8] [9] [10]. The first group has

endeavored to interpret the motifs detected in biological networks

by the existing motif detection tools. But, the second group has

tried to improve the existing motif detection tools to make this job

easier for researchers of the first group. The current research

belongs to the second group.

Motif detection in networks consists of two main steps: first,

calculating the number of occurrences of a subgraph in the

network and, second, evaluating the subgraph significance.

Various methods proposed so far differ mainly in the first step,

the enumeration of subgraphs. These methods can be grouped

roughly into two categories regarding this aspect:

(1) Methods counting subgraph occurrences exactly.

(2) Methods using sampling and statistical approximations for the

enumeration.

In this work, the focus is in the first category, which is also much

more computationally demanding. The methods in this group

require classifying the subgraphs after enumerating them in the

network. In other words, the non-isomorphic classes of enumer-

ated subgraphs should be determined. This can be done in two

ways. First, one can generate all different non-isomorphic classes

of a prescribed size and then calculate the frequency of each in the

network (i.e., count the number of matches of each class in the

network). The drawback is that the number of non-isomorphic

classes grows exponentially with the given size of the subgraph.

Grochow-Kellis [7] and MODA [11] exploits this approach.

Second, one can perform the classification after the subgraphs are

enumerated (i.e., for each enumerated subgraph we determine the

non-isomorphic class separately). Faster tools, such as FANMOD

[5], Kavosh [6] and G-Tries [8], use the latter classification

method. This is also the approach used in the algorithm proposed

in this paper.

The classification step is the most time consuming step of the

second category methods. The reason is the application of

isomorphism detection algorithms, mostly NAUTY [12], in this

step. For example, in FANMOD and Kavosh, after enumerating

each subgraph of a predefined size s it is first inputted to NAUTY

algorithm, which produces a binary canonical labeling of length s2

for that subgraph. Then, the canonical labeling is used as a key to

search a binary tree, each leaf of which indicates a particular non-

isomorphic class of size s. ESU, the algorithm used in FANMOD

tool, is shown in Table 1: Algorithm 1 below (adapted from [13]).

The approach is different in G-Tries, in which a multi-way tree

of depth s, the G-Trie, is used instead of the binary tree. However,

again NAUTY is used for enumerating the subgraphs of the

original network. But, the structure of the G-Trie tree is such that

it can classify subgraphs of random networks without calling

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e68073

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14530318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAUTY. So, NAUTY is only used for census on the original

network. This makes the G-Tries the fastest in the census on

random networks.

Although NAUTY is one of the fastest isomorphism detection

methods, but its computational cost is O(s!) in the worst case, which

is very remarkable. Unfortunately, the isomorphism detection is an

NP problem and no polynomial time algorithm is designed for

solving it yet. Only a few methods, like SAUCY [14] and BLISS

[15], have been designed for improving NAUTY’s performance in

special cases, such as sparse graphs. However, still the upper

bound is O(s!). Furthermore, searching the binary tree takes s22s

operations, which is also considerable.

According to the above, it seems rational to search for methods

that eliminate or decrease the number of executions of NAUTY in

finding motifs. In fact, as stated above, this is the reason of G-

Tries’s success as the fastest method so far. G-Tries algorithm

eliminates the need to call NAUTY during the census on random

networks. But, still, it uses the FANMOD for enumerating the

subgraphs of the original network which is very time consuming

and sometimes infeasible when the size of network and subgraph

are large. G-Tries also provides other options that will improve its

performance on original network, but applying these options need

some prior knowledge or preprocessings. These options will be

discuss later.

This paper provides a new algorithm with the aim of decreasing

the number of calls to NAUTY. For this, the authors propose

embedding a quaternary tree data structure in ESU (the algorithm

used in FANMOD). A quaternary tree is a rooted tree data

structure and each internal node has at most four children (see

Figure 1). Accordingly, each internal node in the tree can have at

most five neighbors, one of which is its parents and the others are

its children.

Each edge, connecting a parent to one of its children, can be

labeled with a mark, which can be a number, character, or any

other symbol. A labeled quaternary tree can be searched using a

given string that consists of the same set of symbols used for

labeling that tree. This searching initiates in the tree’s root. In each

step, one symbol is read from the input string and the current

pointer, initially set as root, moves to the child of the current node,

connecting edge of which corresponds to the symbol that is read

recently from the input string. Because it is allowed to add nodes

during the search, if one node in the path has no child for an input

symbol, a child is added to the current node for that symbol and

the current pointer moves to that child. Thus, this search

continues until the input string is read completely. See Figure 2

for an example.

This quaternary tree performs a partial classification for

enumerated subgraphs in the proposed algorithm. This data

structure, which is similar to G-Trie data structure in some

aspects, is used before calling NAUTY and eliminates the need to

use it most of the times. According to experimental results, the

proposed novel algorithm outperforms the existing algorithms in

most of the cases.

Materials and Methods

Like G-Tries, Kavosh, and FANMOD, QuateXelero consists of

three main phases: enumeration, classification, and motif detec-

tion. Although enumeration and classification phases are inter-

twined, describing them separately makes them more understand-

able. Below, these phases are elaborated.

Enumeration
For enumerating all subgraphs of size k in a given network, the

general procedure is like the one in FANMOD algorithm. What

makes the enumeration in QuateXelero different from that in

FANMOD is the use of a quaternary tree. As in FANMOD the

subgraph is extended by one vertex (hereafter, we use ‘vertex’

instead of ‘node’ when referring to the nodes of the input network,

and alternatively, ‘node’ is used when referring to the nodes of the

quaternary or binary trees) in each step, using the procedure

EXTENDSUBGRAPH. However, this step by step extension allows

the use of the quaternary tree, which is searched along with the

extension. In other words, as the partial subgraph is extended by

one vertex, the quaternary tree is also searched some levels further.

Table 2: Algorithm 2 shows the algorithm of QuateXelero for

census on the original network in detail.

Lines 6, 7, and 8 classify a subgraph after it is fully expanded.

This is described in detail in the next section. Here, the SEARCH

procedure is described. This procedure is called inside the function

EXTENDSUBGRAPH, which expands the partial subgraph by one

vertex each time it is called. After the new vertex w is selected from

VExt in line 11, the SEARCH procedure in line 12 uses the pattern

of connections of w to other vertices of the partial subgraph (i.e.

VSubg) to search the quaternary tree from CurQTNode to CurQTNode’

which is |VSubg| nodes deeper (lines 17 to 27). It is notable that

Figure 1. An example quaternary tree of depth 3. The root node
and internal nodes have at most four children.
doi:10.1371/journal.pone.0068073.g001

Table 1. Algorithm 1.

Algorithm 1: ESU (FANMOD)

Input: Graph G and a positive integer k

Output: k-subgraphs census of graph G

1: for all vMV(G) do

2: VExtr{uMN(V):u.v}

3: EXTENDSUBGRAPH(VSubg, VExt, v, QTree.root)

4: procedure EXTENDSUBGRAPH(VSubg, VExt, v, CurQTNode)

5: if |VSubg| = k then

6: INCREMENTCOUNT(CANONICALLABELING(VSubg))

7: else

8: while VExt ? do

9: remove random chosen wMVExt

10: V’Newr{uMNExclusive(w, VSubg): u.v}

11: V’ExtrVExt<V’New

doi:10.1371/journal.pone.0068073.t001

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e68073

during this search the quaternary tree might be expanded with

new nodes as described in section 2.1. The pattern of connections

of w to other vertices of the partial subgraph is represented by a

string of length e = |VSubg| consisting of the symbols {21, 0, 1, 2}

respectively indicating one way connection from a previously

added vertex u in the subgraph to the newly added vertex w, no

connection between these vertices, one way connection in the

reverse direction, and a two way connection between them. An

example of such a search is depicted in Figure 3. Since the

procedure EXTENDSUBGRAPH is called k21 times for a

particular subgraph of size k, the total length of the path from

the root of the quaternary tree to its leaf will be of length 1+2+
…+k21 = k(k21)/2. This is the maximal complexity for

procedure SEARCH. But, as a consequence of the recursive nature

of the implementation, it is not needed to search the quaternary

tree from the root for all subgraphs, so the complexity of the

algorithm is reduced.

After searching the quaternary tree, the VExt and VSubg sets are

updated in lines 13 and 14 and the procedure EXTENDSUB-

GRAPH is recursively called based on these sets and the node

CurQTNode’.

Classification
During the enumeration, the appropriate leaf of the quaternary

tree is returned by the SEARCH procedure before the last call for

EXTENDSUBGRAPH for a partial subgraph, in which the size of

that subgraph reaches k. Then, the condition of ‘if’ in line 5 in

Table 2: Algorithm 2 is satisfied. At this point, two cases might

happen:

(1) The CurQTNode is created during the search being performed

for the current subgraph (see Figure 3): in this case, which is

determined in line 6, it is needed to call NAUTY or

CANONICALLABELING for the enumerated subgraph to

determine its corresponding class which relates to a leaf in

the binary tree. Then a pointer from CurQTNode is set to that

leaf of the binary tree (see Figure 4). This is performed in line

7 of Table 2: Algorithm 2.

(2) The leaf already existed in the tree and is not added newly: in

this case, this leaf will have a previously set pointer to a leaf in

the binary tree (i.e., the condition in line 6 is not satisfied)

which indicates the isomorphism class to which the current

subgraph belongs (see Figure 5). So there is no need to call

NAUTY and search the binary tree for this subgraph.

In either of the above cases, the next step is to increase the

counter of the corresponding leaf in the binary tree. This is

performed in line 8 of Table 2: Algorithm 2, using the

CurQTNode.pointer which points to the binary tree’s leaf.

The rationale underlying this classification is that if two different

subgraphs reach the same leaf in the proposed quaternary tree,

then those subgraphs are isomorphs of each other. But, it should

be noted that the reverse is not true; in other words, it is possible

for two isomorphic subgraphs to reach two different leafs of the

quaternary tree. Thus, there may be two or more different

quaternary tree leaves pointing to the same Binary Tree leaf.

Accordingly, in this algorithm (lines 6 to 7) the need to invoke

the NAUTY function and searching the binary tree is eliminated

in many cases by exploiting the proposed quaternary tree. That is,

the cost of s22s+O(s!) is reduced to less than s(s21)/2 for many of

the enumerated subgraphs, while for others an extra O(s(s21)/2)

operation is added to ss+O(s!). But, how is the ratio of the former

subgraphs (i.e., cost reduced) to the latter ones (i.e., cost

augmented)? The answer to this question indicates the speedup

ratio of the QuateXelero compared with Kavosh and FANMOD.

As discussed in section 4, this highly depends on the number of

non-isomorphic classes of the subgraphs of the given network.

However, regarding the experimental results, in most cases,

QuateXelero will perform remarkably better than existing

algorithms, because the number of subgraphs is so much more

than the number of non-isomorphic classes (especially in large

biological networks). This means that a remarkable number of

subgraphs will reach the same leaf of the quaternary tree, and so

calling the NAUTY will not be required for them except for the

first one. Consequently, this will significantly reduce the compu-

tational time of motif finding.

Figure 2. Searching a sample quaternary tree for input string ‘‘321’’. Searching starts at the root of the tree. After respectively visiting
children 3 and 2 throughout the path, the search finishes in a newly added leaf, corresponding to number 1.
doi:10.1371/journal.pone.0068073.g002

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e68073

There is a delicate difference between census on the original

network (Table 2: Algorithm 2) and the random networks in

QuateXelero. During census on the original network, the binary

tree would be modified when a new class of isomorphism is

detected. However, for the random networks function BLeaf does

not change the structure of a binary tree. It searches the binary

tree until it reaches either a null node or a leaf. The former case

means that the recently enumerated subgraph is of an isomor-

phism class that does not exist in the original network; so that the

subgraph is ignored. In the latter case, the counter of the

corresponding leaf in the binary tree is increased to account for the

enumerated subgraph.

At the first glance, the algorithm might seem similar to the ESU

option of G-Tries algorithm [8] (please refer to http://www.dcc.fc.

up.pt/gtries/), but there are substantial differences. While the

function of quaternary tree structure is the same as the G-Trie

multi-way data structure and both have theoretically, but not

practically, similar structures, it should be noted that the way of

exploiting these data structures is completely different in two

algorithms. First, like QuateXelero, the G-Tries structure is also

constructed while processing the original network with the delicate

difference that Quaternary Tree is developed along with

enumerations but G-Trie is generated after the completion of

enumerating the subgraphs of the original network (ESU). On the

other hand, unlike QuateXelero, the canonical labeling is

computed for all subgraphs of the original network in ESU step

of G-Tries algorithm using NAUTY. This remarkably reduces the

computational time of census on the original network in

QuateXelero compared with G-Tries. Second, after constructing

the G-Tries, NAUTY is not used any more for random networks,

and instead the subgraphs are enumerated and classified using G-

Tries data structure. But, in this work, the NAUTY is also possibly

called for some subgraphs of random networks. However, this

possibility gradually reduces during processing the random

networks. Accordingly, it is the total number of executions of

NAUTY in these algorithms that determines the superiority of one

to another. Recall that NAUTY is the most time consuming part

of the motif detection algorithms depending on it.

Motif Detection
After the census on the original network with the help of a

quaternary tree, each leaf of the binary tree will contain the

number of subgraphs belonging to the corresponding isomorphism

class. Then, some random networks are generated by rewiring and

Table 2. Algorithm 2.

Algorithm 2: QuateXelero (original network)

Input: Graph G and a positive integer k

Output: k-subgraphs census of graph G

1: for all vMV(G) do

2: VExtr{uMN(V): u.v}

3: EXTENDSUBGRAPH(VSubg, VExt, v, QTree.root)

4: procedure EXTENDSUBGRAPH(VSubg, VExt, v, CurQTNode)

5: if |VSubg| = k then

6: if CurQTNode.pointer = NULL then //Only in this case it is required to call NAUTY

7: CurQTNode.pointerrBLeaf(CANONICALLABELING(VSubg)) //BLeaf returns a pointer to corresponding leaf in the binary tree

8: INCREMENTCOUNT(CurQTNode.pointer) //Increases the counter of BLeaf to which the CurQTNode.pointer points

9: else

10: while VExt ? do

11 remove random chosen wMVExt

12: CurQTNode’rSEARCH(VSubg, w, CurQTNode) //Searching the quaternary tree

13: V’Newr{uMNExclusive(w, VSubg): u.v}

14: V’ExtrVExt<V’New

15: EXTENDSUBGRAPH(VSubg<{w}, V’Ext, v, CurQTNode’)

16: procedure SEARCH(VSubg, w, CurNode) returns ResultNode

17: ResultNoderCurNode

18: for all uMVSubg do

19: if (u, w)ME(G) and (w, u)ME(G) then

20: ResultNoderchild number 2 of ResultNode

21: else if (w, u)ME(G) then

22: ResultNoderchild number 1 of ResultNode

23: else if (u, w)ME(G) then

24: ResultNoderchild number 21 of ResultNode

25: else

26: ResultNoderchild number 0 of ResultNode

27: return ResultNode

doi:10.1371/journal.pone.0068073.t002

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e68073

the census on is repeated on them. As the random generation

method, we used the same method applied in G-Tries (3 swaps per

edge with random Markov Chain process). The generated

networks are checked against those generated by G-Tries and

the results indicate the consistency of the random generation

method.

Finally, the number of subgraphs of each isomorphism class for

original and random networks will be used in calculating the z-

score of each isomorphism class as below:

z{scorei~
Ci{mi

si

where Ci, mi and si are respectively the number of occurrences of i

in the original network, average number of occurrences of i in the

random networks, and the standard deviation of occurrences of i

in the random networks. The higher the z-score, the more possible

the particular isomorphism class (i) is a motif in the given network.

Datasets
We used six standard networks for evaluating our algorithm.

These were three biological networks: the metabolic pathway of

bacteria E. coli [16], the transcription network of Yeast S. cerevisiae

[17], and the protein-protein interaction network of the budding

Yeast [18], [19], and three other non-biological networks: a real

Figure 3. Steps taken to search the quaternary tree during expanding (enumerating) a sample subgraph. In this figure, 21 indicates
one way connection from the existing vertex to added vertex, 0 indicates no connection between them, 1 stands for a one way connection in the
reverse direction, and 2 shows a two way connection. The order of numbers in the input string is the same order as the corresponding vertices are
added during expanding the subgraph (that is 1, 2, 3, and then 4 in this example).
doi:10.1371/journal.pone.0068073.g003

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e68073

Figure 4. Steps taken during classifying a subgraph, in which a new leaf is added to the quaternary tree. 1) The quaternary tree is
searched and the new leaf is added 2) Because the leaf is new and its pointers is not set, NAUTY is executed for the subgraph being enumerated 3)
After finding the canonical label for the subgraph, the binary tree is searched using that label and the corresponding leaf in the binary tree is
identified 4) The subgraph counter of that leaf (which indicates the number of subgraph of that class found so far in the network) is increase one unit
5) The pointer of the leaf of quaternary tree is set to the identified leaf of the Binary Tree.
doi:10.1371/journal.pone.0068073.g004

Figure 5. Steps taken during classifying a subgraph which has reached a previously existing leaf in the quaternary tree. 1) The
quaternary tree is searched and the corresponding leaf is identified 2) Using the identified leaf’s pointer to the corresponding leaf from binary tree,
the latter’s counter is augmented.
doi:10.1371/journal.pone.0068073.g005

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e68073

social network [6], a dolphins social network [20], [21] and an

electronic network [1]. Self-loops were removed from all networks.

The features of these networks are displayed in Table 3. All these

datasets are included in the available online package for

convenience.

Results

Because Kavosh and G-Tries are the bests amongst the existing

motif finders, they are chosen for comparison with QuateXelero.

Table 3. Experimental Datasets.

Network Directionality Vertices Edges Description Source

Yeast Directed 688 1079 Yeast transcription network [17]

E. coli Directed 672 1275 Metabolic pathway of
bacteria E. coli

[16]

Social Directed 67 182 A real social network [6]

Electronic Directed / Undirected 252 399 (both dir and undir) Electronic circuit [1]

YeastPPI Undirected 2361 6646 Protein-protein interaction
network in budding yeast

[19] and [18]

Dolphins Undirected 62 159 Frequent associations
between a group of
dolphins

[21] and [20]

doi:10.1371/journal.pone.0068073.t003

Table 4. Experimental Results for QuateXelero vs. Kavosh.

Processing Times
Comparison vs.
Kavosh

Network s Subgraphs Classes
Subgraphs/
Classes Kavosh QX

Yeast 5 2508149 174 14414.65 23.4 0.5 46.80x

Yeast 6 32883898 888 37031.42 438.5 8.9 49.27x

Yeast 7 416284878 4809 86563.71 14056.2 166.4 84.47x

Yeast 8 5184710063 27003 192004.97 224497 2609.5 86.03x

Yeast 9 64730339589 156025 414871.59 - 53852.1 -

Average Run Time Growth Ratio: 22.3 18.2

Electronic 5 19675 49 401.53 0.13 0 nan

Electronic 6 97038 199 487.63 0.8 0.08 10.00x

Electronic 7 495274 907 546.06 5.9 0.3 19.67x

Electronic 8 2572125 4333 593.61 38.7 1.9 20.37x

Electronic 9 13512688 20692 653.04 278.2 11.9 23.38x

Electronic 10 71614362 96483 742.25 2614.2 71.2 36.72x

Electronic 11 381985209 437821 872.47 - 493.3 -

Average Run Time Growth Ratio: 7.33 5.85

E.coli 5 80724 590 136.82 0.48 0.05 9.60x

E.coli 6 558080 3884 143.69 4.3 0.3 14.33x

E.coli 7 4019781 23587 170.42 45.3 2.8 16.18x

E.coli 8 29294103 136569 214.50 410.7 23.6 17.40x

E.coli 9 212782282 768121 277.02 4000 190.7 20.98x

Average Run Time Growth Ratio: 9.57 7.96

Social 5 10599 773 13.71 0.11 0.06 1.83x

Social 6 52156 5062 10.30 0.82 0.36 2.28x

Social 7 254674 30217 8.43 5.4 2.6 2.08x

Social 8 1224376 165958 7.38 33.3 16.3 2.04x

Social 9 5764767 854023 6.75 220.3 96.22 2.29x

Average Run Time Growth Ratio: 6.71 6.35

doi:10.1371/journal.pone.0068073.t004

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e68073

G-Tries is superior regarding the speed and Kavosh is better in

memory usage.

Comparison with Kavosh
For comparing QuateXelero with Kavosh, both algorithms

were executed on the same computer with Quad Core AMD

Opteron TM Processor 2354 and CentOS Linux Release 6.0 (final)

operating system. The number of random networks is set to two in

all experiments, which is enough for having valid results in

experiments. It is important to note that this number of random

networks is not suitable for motif detection in practice and is only

used here for getting fast results for comparison. Moreover,

different sizes of motif were considered in the experiments in order

to assess the effect of the motif size on the performance of the

algorithms.

The results are illustrated in Table 4. It is seen that, while

QuateXelero is very faster than Kavosh in all cases, the amount of

this superiority depends on the network size and structure, motif

size, and the variety of its non-isomorphic classes. More precisely,

it is completely related to the ratio of number of subgraphs to

number of classes displayed in the fifth column of Table 4. The

greater the ratio is, the more superior the performance of

QuateXelero becomes. For example, QuateXelero is up to 86

times faster when finding motifs of size 8 in the Yeast network, but

only 21 times faster for E.coli network in identifying motifs of size

9. This is mainly because the number of subgraphs in Yeast is

greater than E.coli, but these subgraphs fall in a smaller number of

non-isomorphic classes in Yeast compared with E.coli. So the need

to call NAUTY is more reduced for Yeast than for E.coli.

However, generally, the results indicate that QuateXelero

outperforms Kavosh regarding processing time in all cases. This

is also illustrated in Figure 6, which also indicates the growing gap

between algorithms when the size of the motif (i.e., s) is increased.

In other words, QuateXelero still acts much better when the motif

size increases. Average run time growth ratios in Table 4 further

approve this fact.

The only drawback of the proposed algorithm is the consider-

able amount of memory that is used to construct the quaternary

tree for larger motif sizes and for networks containing larger

number of non-isomorphic subgraph classes. For example, among

the experiments mentioned in Table 4, the highest amount of

memory used by Kavosh was about 370 MB for Social network

and motif size 9. On the other hand, QuateXelero occupied about

2.8 GB of memory (more than 7 times larger) for the same test

case and about 4.6 GB for Electronic network and motif size 11.

Nevertheless, regarding the availability and low prices of large

memories nowadays, this could not be a very serious shortage, at

least for smaller more popular sizes.

Comparison with G-Tries
To compare QuateXelero with G-Tries, three groups of

experiments are conducted. First, both of the algorithms are

Figure 6. Growing gap between the running times of Kavosh and QuateXelero. In the charts, the horizontal axis indicates the size of motif
and the vertical axis is the log of running time. The bases of logarithms are set to integer numbers close to the average running time growth rates
shown in Table 5 for each network. The growing gaps are more visible in the charts for Yeast, Electronic, and E.coli networks.
doi:10.1371/journal.pone.0068073.g006

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 8 July 2013 | Volume 8 | Issue 7 | e68073

T
a

b
le

5
.

Q
u

at
e

X
e

le
ro

(Q
X

)
vs

.
G

-T
ri

e
s

in
sm

al
le

r
m

o
ti

fs
.

C
e

n
su

s
o

n
O

ri
g

in
a

l
A

v
g

.
C

e
n

su
s

o
n

R
a

n
d

o
m

s
T

o
ta

l
T

im
e

M
e

m
o

ry

N
e

tw
o

rk
s

S
u

b
g

ra
p

h
s

C
la

ss
e

s
S

u
b

g
ra

p
h

s/
C

la
ss

e
s

A
v

g
.
#

o
f

su
b

g
ra

p
h

s
in

ra
n

d
o

m
n

e
ts

E
S

U
o

f
G

-T
ri

e
s

Q
X

G
-T

ri
e

s
Q

X
E

S
U

+G
-T

ri
e

s
Q

X
G

-T
ri

e
s

Q
X

E
q

u
a

li
ty

P
o

in
t

Y
e

as
t

5
2

5
0

8
1

4
9

1
7

4
1

4
4

1
4

.6
5

3
2

7
7

2
3

9
3

0
.8

4
6

0
.7

3
3

0
.6

9
3

0
.9

5
5

3
7

.8
5

1
0

.5
1

1
.5

M
B

1
.8

M
B

1
1

4
.3

5

Y
e

as
t

6
3

2
8

8
3

8
9

8
8

8
8

3
7

0
3

1
.4

2
5

1
9

8
2

2
4

5
5

3
2

.8
0

6
1

1
.2

0
1

1
1

.9
0

9
1

7
.8

5
6

6
5

1
.0

7
1

9
0

.2
0

2
.3

M
B

2
.5

M
B

8
7

.5
0

Y
e

as
t

7
4

1
6

2
8

4
8

7
8

4
8

0
9

8
6

5
6

3
.7

1
8

7
2

9
7

3
0

8
2

1
2

3
1

4
.3

1
4

1
6

4
.5

9
6

2
2

0
.6

5
6

3
4

4
.5

3
9

1
4

4
9

4
.6

0
3

6
1

1
.7

7
7

.1
M

B
8

.8
M

B
9

7
.8

5

A
ve

ra
g

e
G

ro
w

th
R

a
ti

o
:

2.
45

16
.3

3
20

.1
9

14
.9

9
17

.8
6

19
.0

0

So
ci

al
5

1
0

5
5

9
7

7
3

1
3

.6
6

1
6

0
6

0
.4

9
0

.0
9

4
0

.0
3

1
0

.0
1

9
0

.0
0

9
3

.5
5

1
.3

1
5

.4
M

B
2

.7
M

B
2

1
2

4
.0

0

So
ci

al
6

5
2

1
5

6
5

0
6

2
1

0
.3

0
9

0
4

3
0

.9
4

0
.5

8
1

0
.2

1
8

0
.1

1
8

0
.0

7
0

2
2

.7
4

9
.0

0
3

0
.7

M
B

1
3

.9
M

B
2

1
8

6
.2

5

So
ci

al
7

2
5

4
6

7
4

3
0

2
1

7
8

.4
3

4
9

9
6

3
2

.8
9

3
.5

3
2

1
.4

5
1

0
.7

2
5

0
.6

1
2

1
5

4
.9

1
7

2
.7

8
1

8
4

.9
M

B
1

4
3

.7
M

B
2

6
2

6
.8

1

A
ve

ra
g

e
G

ro
w

th
R

a
ti

o
:

0.
79

5.
58

6.
13

6.
84

6.
18

8.
26

E.
co

li
5

8
0

7
2

4
5

9
0

1
3

6
.8

2
8

9
8

3
1

.6
9

0
.6

1
2

0
.0

6
3

0
.1

2
6

0
.0

3
7

1
5

.6
3

5
.5

1
4

.5
M

B
7

.7
M

B
2

1
3

.7
1

E.
co

li
6

5
5

8
0

8
0

3
8

8
4

1
4

3
.6

9
6

3
9

6
9

0
.3

4
5

.6
0

4
0

.5
4

6
0

.9
1

0
0

.3
0

3
1

0
4

.0
7

3
3

.6
5

2
2

.1
M

B
1

3
.6

M
B

2
1

6
.0

1

E.
co

li
7

4
0

1
9

8
7

1
2

3
5

8
7

1
7

0
.4

3
4

8
0

0
4

1
8

.4
0

5
1

.0
9

2
4

.4
3

0
7

.1
9

5
2

.6
0

0
8

2
2

.4
2

2
7

4
.4

5
1

3
5

.4
M

B
7

4
.6

M
B

2
1

9
.2

5

A
ve

ra
g

e
G

ro
w

th
R

a
ti

o
:

1.
12

7.
30

9.
14

8.
39

7.
56

8.
39

El
e

ct
ro

n
ic

5
1

9
6

7
5

4
9

4
0

1
.5

3
2

0
3

1
6

.5
5

0
.1

8
4

0
.0

1
5

0
.0

1
4

0
.0

0
9

2
.1

3
1

.2
8

1
.2

M
B

3
.4

M
B

2
7

0
.0

0

El
e

ct
ro

n
ic

6
9

7
0

3
8

1
9

9
4

8
7

.6
3

9
9

7
6

6
.4

2
1

.0
9

7
0

.0
6

3
0

.0
6

8
0

.0
5

1
8

.4
9

5
.5

9
2

.4
M

B
3

.9
M

B
2

7
0

.5
9

El
e

ct
ro

n
ic

7
4

9
5

2
7

4
9

0
7

5
4

6
.0

6
5

2
2

8
9

0
.2

0
7

.7
8

0
0

.3
9

0
0

.3
7

6
0

.3
0

2
4

5
.8

1
3

1
.2

9
8

.6
M

B
8

.5
M

B
2

9
6

.2
2

A
ve

ra
g

e
G

ro
w

th
R

a
ti

o
:

1.
17

5.
08

6.
53

5.
20

5.
19

5.
79

1
0

,
1

0
0

,
1

0
0

,
an

d
1

0
0

ra
n

d
o

m
n

e
tw

o
rk

s
w

e
re

u
se

d
re

sp
e

ct
iv

e
ly

fo
r

Y
e

as
t,

So
ci

al
,

E.
co

li,
an

d
El

e
ct

ro
n

ic
n

e
tw

o
rk

s.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

6
8

0
7

3
.t

0
0

5

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 9 July 2013 | Volume 8 | Issue 7 | e68073

tested against smaller motif sizes on directed networks, second the

same experiments are performed for larger sizes to understand the

effects of motif size on run time of the two algorithms, and finally

algorithms’ performances are tested for undirected networks.

Here, before explaining the experimental results, there is a point

that worths noting. Currently, G-Tries provide an important and

useful option for census on networks: having a list of non-

isomorphic classes whose occurances are going to be counted, one

can generate a G-Trie based on those subgraphs and then apply

that G-Trie for enumerating subgraphs of both original and

random networks.

However, it should be noted that if the goal is to exploit this

option to enumerate all subgraphs occurring in a given network,

two rough solutions might come to mind initially: 1) knowing all

non-isomorphic classes occurring in the given network in advance,

one can generate a G-Trie based on those subgraphs and then

apply the G-Trie for enumeration, and 2) one can generate a G-

Trie containing all possible non-isomorphic classes of a given size

and then using it for enumeration. The first solution is obviously

impossible as we need to first enumerate all subgraphs of a

network before knowing their complete list of non-isomorphic

classes. In other words, before being able to use this option to

generate the solution, we need the solution itself. The second

solution, although useful in smaller motif sizes, becomes imprac-

tical for sizes larger than 7 or 8 for directed and 11 or 12 for

undirected networks, since the number of non-isomorphic classes

grows exponentially and storing the generated G-Tries would need

a tremendous amount of memory.

The provided option in G-Tries is useful when we are

performing a set-centric subgraph enumeration (i.e., counting

the occurances of a given set of subgraphs) or when the motif size

is small. This option can (and is planned to) also be embedded in

QuateXelero easily, as the general structure of QuateXelero and

G-Tries are similar. However, the aim of this paper is not to

Figure 7. The concept of Equality Point. Positive and negative equality points are illustrated respectively in the left and the right charts. The
vertical axis t indicates the total time of algorithms and the horizontal axis r shows the number of random networks used for motif detection.
doi:10.1371/journal.pone.0068073.g007

Figure 8. Effect of number of random networks on average time of census on a single random network. Numbers in the parenthesis
show the size of the motif for which the experiments are conducted (the results can be generalized to other motif sizes). The vertical axis indicates
the ratio (in percentage) of run time to the run time for 20 random networks. Except Yeast, the other networks exhibit a decline in the random
network census time for the successive random networks.
doi:10.1371/journal.pone.0068073.g008

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 10 July 2013 | Volume 8 | Issue 7 | e68073

T
a

b
le

6
.

Q
u

at
e

X
e

le
ro

(Q
X

)
vs

.
G

-T
ri

e
s

in
la

rg
e

r
m

o
ti

fs
.

C
e

n
su

s
o

n
O

ri
g

in
a

l
A

v
g

.
C

e
n

su
s

o
n

R
a

n
d

o
m

s
T

o
ta

l
T

im
e

M
e

m
o

ry

N
e

tw
o

rk
s

S
u

b
g

ra
p

h
s

C
la

ss
e

s
S

u
b

g
ra

p
h

s/
C

la
ss

e
s

A
v

g
.
#

o
f

su
b

g
ra

p
h

s
in

ra
n

d
o

m
n

e
ts

E
S

U
o

f
G

-
T

ri
e

s
Q

X
G

-T
ri

e
s

Q
X

E
S

U
+G

-T
ri

e
s

Q
X

G
-T

ri
e

s
Q

X
E

q
u

a
li

ty
P

o
in

t

Y
e

as
t

9
6

4
7

3
0

3
3

9
5

8
9

1
5

6
0

2
5

4
1

4
8

7
1

.6
2

5
5

2
9

8
1

4
9

9
5

7
8

4
8

1
8

6
.4

9
6

2
0

5
.9

8
1

3
5

4
4

.2
0

2
3

9
5

0
.8

0
2

9
1

5
9

0
7

.4
7

1
2

5
9

6
2

.3
1

7
1

1
M

8
8

9
M

8
0

.9
1

A
ve

ra
g

e
G

ro
w

th
R

a
ti

o
:

-
-

-
-

-
-

So
ci

al
9

5
7

6
4

7
6

7
8

5
4

0
2

3
6

.8
1

5
9

5
0

5
9

5
2

1
.2

5
9

.6
2

5
.8

3
0

1
2

.2
2

8
1

1
9

.3
4

8
3

.3
7

1
.5

G
2

.8
G

1
0

.6
2

So
ci

al
1

0
2

6
4

2
9

2
0

1
4

1
6

1
4

7
7

6
.4

8
1

1
0

6
8

5
4

1
2

1
.0

1
5

4
.3

0
3

4
.5

7
0

8
5

.2
5

2
7

3
1

.6
6

5
5

8
.7

0
7

.9
G

1
8

G
8

.4
1

So
ci

al
1

1
1

1
7

2
1

9
3

9
4

1
9

2
8

5
1

5
2

6
.1

3
9

2
2

0
9

4
8

9
6

6
9

.3
5

2
7

3
.5

4
2

3
7

.7
6

1
6

5
3

.0
1

4
4

5
2

7
.9

5
4

3
6

8
.3

8
4

0
.0

G
5

9
G

5
.3

8

A
ve

ra
g

e
G

ro
w

th
R

a
ti

o
:

0.
95

5.
0

5.
61

5.
34

6.
40

7.
32

E.
co

li
9

2
1

2
7

8
2

8
2

8
7

6
8

1
2

1
2

7
7

.0
2

8
1

4
0

6
5

7
9

7
2

8
.6

9
4

7
.5

2
8

6
.4

9
3

4
1

.0
7

8
1

2
2

3
.2

7
2

6
4

.9
6

1
.2

G
2

.4
G

2
1

6
.1

0

E.
co

li
1

0
1

5
2

9
7

0
7

2
4

1
4

2
2

3
0

4
0

3
6

2
.2

2
5

6
4

1
7

8
5

8
7

6
3

5
7

.9
5

3
5

2
.4

6
9

2
9

.2
0

0
4

0
2

.1
4

6
1

1
4

6
1

.6
9

2
4

4
3

.2
1

7
.6

G
1

9
G

2
1

2
.1

1

E.
co

li
1

1
1

0
8

5
4

0
4

3
4

7
2

2
2

7
6

4
2

0
6

4
7

6
.8

1
3

8
0

1
5

4
5

7
4

8
5

3
8

1
9

.3
7

-
8

8
3

4
.4

3
2

-
1

0
1

1
8

4
.8

6
-

4
4

.0
G

-

A
ve

ra
g

e
G

ro
w

th
R

a
ti

o
:

1.
31

7.
3

8.
60

7.
42

10
.1

3
9.

79

El
e

ct
ro

n
ic

9
1

3
5

1
2

6
8

8
2

0
6

9
2

6
5

3
.0

1
7

0
3

1
7

9
5

6
5

.8
9

2
.3

4
2

.3
6

0
2

.6
0

4
7

9
.1

8
1

6
.1

1
4

2
M

1
3

0
M

2
6

3
.4

8

El
e

ct
ro

n
ic

1
0

7
1

6
1

4
3

6
2

9
6

4
8

3
7

4
2

.3
7

8
5

6
8

2
5

9
4

8
3

.4
1

1
3

.8
9

1
1

.6
2

6
1

4
.9

6
2

5
5

0
.7

6
9

0
.7

6
2

0
6

M
6

7
8

M
1

4
2

.8
9

El
e

ct
ro

n
ic

1
1

3
8

1
9

8
5

2
0

9
4

3
7

8
2

1
8

7
2

.5
4

6
4

5
4

6
6

6
0

3
9

9
8

.6
1

8
2

.7
5

7
6

.7
9

3
1

1
3

.9
2

0
4

4
3

8
.7

6
6

6
3

.1
1

1
.0

G
4

.6
G

1
0

6
.7

0

El
e

ct
ro

n
ic

1
2

2
0

4
5

2
8

7
4

0
5

1
9

4
3

6
8

1
1

0
5

2
.3

2
4

5
0

7
1

0
0

2
6

-
5

0
4

.4
0

-
7

9
6

.2
6

8
-

4
5

5
7

.1
5

-
2

5
G

A
ve

ra
g

e
G

ro
w

th
R

a
ti

o
:

1.
17

5.
3

7.
80

6.
00

5.
63

6.
78

5
ra

n
d

o
m

n
e

tw
o

rk
s

w
e

re
u

se
d

in
al

l
e

xp
e

ri
m

e
n

ts
.

B
o

ld
e

d
it

al
ic

va
lu

e
s

fo
r

Y
e

as
t

n
e

tw
o

rk
ar

e
e

st
im

at
e

d
w

it
h

re
sp

e
ct

to
th

e
re

su
lt

s
in

T
ab

le
5

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

6
8

0
7

3
.t

0
0

6

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 11 July 2013 | Volume 8 | Issue 7 | e68073

compare the performance of two algorithms in set-centric

searches, but this work is aimed at comparing these algorithms

in both steps of generating and applying the Quaternary Tree and

G-Trie data structures, specially for larger motifs where the set-

centric option becomes inapplicable. Thus, here we emphasize the

ESU option of G-Tries, which we call ESU+G-Tries. So the

algorithm will have two steps: ESU (the algorithm of FANMOD)

or census on original network, and G-Tries or census on

randomized networks. The comparison of other options of G-

Tries with the equivalent options in the proposed algorithm (which

are planned to be implemented) takes a separate research.

Having said this, we continue discussing the comparison results.

For comparing the algorithms a metric called ‘‘Equality Point’’ is

defined. The equality point (ep) indicates the number of random

networks, for which both algorithms take the same processing time

to identify motifs. In other words, ep is the number of random

networks at which the total processing times of both algorithms are

equal. This can be calculated using the equation below, in which to
i

is the time required by algorithm i for performing all calculations

other than the census on random networks (including census on

the original network, writing the output file, etc.), and tr
i is the

average time that an algorithm i spends for census on a single

random network.

total time A~total time B?tA
o ztA

r |ep~tB
o ztB

r |ep

?ep~
tA
o {tB

o

tA
r {tB

r

This concept is also illustrated in Figure 7. This figure exhibits

two different cases when the ep is positive (the left chart) and when

it is negative (the right chart). In the former case, the equality point

is the point after which the superior algorithm (i.e., A) becomes the

inferior one, and the inferior one (i.e., B) becomes the superior.

However, in the second case, one algorithm (e.g., Algorithm B) is

superior to the other for all numbers of random networks. The ep

metric is used later to investigate the usefulness of the proposed

algorithm.

First the results for the small motifs are discussed. These results

are presented in Table 5. Before interpreting these results, there is

a need to remark a significant feature of QuateXelero, which is not

found in G-Tries. This feature is illustrated in Figure 8. This figure

indicates that, except for Yeast, for all other networks the average

time spend for census on random networks decreases as the

number of random networks soars. This is especially observable

for Social network, for which the variety of non-isomorphic classes

is greater than for other networks. This phenomenon is the result

of the fact that the quaternary tree becomes more and more

complete when more random networks are enumerated using it.

In other words, the more the variety of input subgraphs (i.e., more

random networks), the more comprehensive the quaternary tree.

So, the need to call NAUTY declines for the successive random

networks and less time is spent on them. This fact was respected in

designing the experiments for smaller motifs. Based on this

phenomenon, the numbers of random networks for Yeast, Social,

E.coli, and Electronic networks were set to 10, 100, 100, and 100,

respectively. This was done with the assumption that many of the

motif finding tasks uses 100 random networks in their calculations.

Now, we return back to Table 5. It is seen in this table that in all

cases, QuateXelero accomplishes census on the original network

several times faster than ESU of G-Tries. However, on the other

hand, G-Tries is faster in census on the random networks for

Yeast. Again, with the assumption that most of the motif finding

tasks uses 100 random networks and according to Equality Point

values, it can be said that QuateXelero will detect motifs faster

than ESU+G-Tries in all cases, except when finding motif of size 6

in the Yeast regulatory network, for which the ep is below 100.

Both of the algorithms almost acts similarly for motifs of size 7 in

the Yeast network (ep < 100).

Taking into account the results for larger motifs shown in

Table 6, it can be concluded that in Social and Electronic

networks the performance of two algorithms converge as the size

of motifs grows, and in a point, ESU+G-Tries would surpasses

QuateXelero. For Social network, this has happened in Table 6,

where the ep values are below 100. As stated in the previous

section, this is partially related to the ratio subgraphs/classes

displayed in column five, which is a very smaller value in Social

network in comparison with other networks. Furthermore, unlike

the other networks, for Social network this value decreases when

the size of motif (i.e., s) is increased (i.e., its growth ratio is below

1). However, this is not the only factor influencing the Equality

Point. Another factor is the degree distribution, which is closer to a

normal distribution in Social network than the other networks,

which have power-law distributions. Also, Social network has

higher density (0.041) compared to Yeast (0.002), E.coli (0.003),

and Electronic (0.006). All these factors augment the variety of

subgraphs in random networks and so increase the possibility that

QuateXelero calls NAUTY during the census on the random

networks. This makes QuateXelero slower than ESU+G-Tries in

detection of Social network’s large motifs when the number of the

random networks is high. While QuateXelero has always been

better in detecting the motifs of the Electronic network in our

experiments, the trend of ep values indicates that ESU+G-Tries

will surpass QuateXelero for larger motif sizes. These are also

concludible according to the values of average growth ratios, as the

average growth ratio of the time of census on random networks for

QuateXelero (column 10) is always greater than the same value for

G-Tries (column 9), except for large motifs of the E.coli network.

For Yeast network the situation is different. While the limited

experiments here are not enough to make a judgment about this,

but regarding Tables 5 and 6, it can be inferred that ep values do

not exhibit a meaningful trend for this network, and the two

algorithms act almost equally with ESU+G-Tries, being somewhat

superior in detecting larger motifs.

However, for E.coli, QuateXelero has always been superior to

ESU+G-Tries, and the trend of ep values indicates that for larger

motifs these values will remain negative, which shows that

QuateXelero will also be better for those motif sizes.

The third series of experiments were about undirected networks.

These results are displayed in Table 7 and Figure 9. From the

table and figure, it can be understood that QuateXelero is faster

for small and slower for medium size motifs. However, regarding

the trends of random census time ratios (i.e. ratio of average time

spent by QuateXelero for census on random networks to the same

time required for G-Tries) and ep values, respectively in the left

and right charts in Figure 9, it seems that the results for YeastPPI

and Electronic will perform the same behavior observed for

Dolphins in larger motif sizes. In other words, it seems that

QuateXelero will again surpass in larger motifs, for which some

limitations (time for YeastPPI and core dumping during running

ESU+G-Tries for size 11 on Electronic network) prevented us

from conducting more experiments. Furthermore, probabily there

is a relationship between the ratio Subgraphs/Classes (column 4 of

Table 7) and the performance of algorithms. Seemingly, QuateX-

elero will perform generally better for networks for which this ratio

is small, as illustrated for Dolphins network.

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 12 July 2013 | Volume 8 | Issue 7 | e68073

T
a

b
le

7
.

Q
u

at
e

X
e

le
ro

(Q
X

)
vs

.
G

-T
ri

e
s

in
u

n
d

ir
e

ct
e

d
n

e
tw

o
rk

s.

C
e

n
su

s
o

n
O

ri
g

in
a

l
A

v
g

.
C

e
n

su
s

o
n

R
a

n
d

o
m

s
T

o
ta

l
T

im
e

M
e

m
o

ry

N
e

tw
o

rk
s

S
u

b
g

ra
p

h
s

C
la

ss
e

s
S

u
b

g
ra

p
h

s/
C

la
ss

e
s

A
v

g
.
#

o
f

su
b

g
ra

p
h

s
in

ra
n

d
o

m
n

e
ts

E
S

U
o

f
G

-T
ri

e
s

Q
X

G
-T

ri
e

s
Q

X
E

S
U

+
G

-T
ri

e
s

Q
X

G
-T

ri
e

s
Q

X
E

q
u

a
li

ty
P

o
in

t

Y
e

as
tP

P
I

4
2

0
0

3
9

9
8

6
3

3
3

9
9

9
.7

2
4

4
7

8
2

5
3

.4
5

7
0

.1
2

0
0

.1
3

4
0

.1
3

8
5

.6
2

1
.7

9
1

.5
G

1
7

.3
M

1
0

3
1

.2
6

Y
e

as
tP

P
I

5
4

8
8

7
0

4
7

6
2

1
2

3
2

7
1

6
5

.5
6

9
5

9
9

6
6

4
1

0
0

.4
6

6
3

.3
1

0
2

.6
5

8
4

.6
0

4
1

2
7

.9
2

4
9

.6
3

7
.9

G
1

7
.4

M
5

0
.2

4

Y
e

as
tP

P
I

6
1

2
9

2
7

8
0

5
4

4
1

1
2

1
1

5
4

2
6

8
3

.4
2

1
5

8
6

1
2

0
8

3
3

7
5

5
.9

0
2

1
0

5
.7

8
0

9
1

.1
7

3
1

6
9

.0
5

4
4

6
6

7
.0

6
1

7
9

6
.6

4
0

.0
G

1
7

.7
M

4
6

.8
6

El
e

ct
ro

n
ic

5
1

9
6

7
5

1
1

1
7

8
8

.6
2

1
6

8
2

0
.0

4
0

0
.0

0
1

0
.0

0
2

0
.0

0
1

0
.0

9
0

.0
3

0
.3

M
1

.1
M

2
4

3
.9

0

El
e

ct
ro

n
ic

6
9

7
0

3
8

3
3

2
9

4
0

.6
1

0
9

6
4

8
0

.2
6

7
0

.0
1

0
0

.0
1

0
0

.0
1

2
0

.3
9

0
.1

4
0

.4
M

1
.1

M
1

6
6

.2
6

El
e

ct
ro

n
ic

7
4

9
5

2
7

4
8

9
5

5
6

4
.9

5
7

0
1

6
7

1
.5

4
4

0
.0

6
0

0
.0

5
6

0
.0

7
3

2
.1

3
0

.8
1

0
.6

M
1

.5
M

8
9

.2
5

El
e

ct
ro

n
ic

8
2

5
7

2
1

2
5

2
9

3
8

7
7

8
.6

3
0

0
2

2
5

4
1

0
.1

1
8

0
.3

7
0

0
.3

1
0

0
.4

2
7

1
3

.2
6

4
.6

5
1

.3
M

3
.0

M
8

3
.2

6

El
e

ct
ro

n
ic

9
1

3
5

1
2

6
8

8
1

0
0

1
1

3
4

9
9

.2
1

8
2

9
1

6
2

3
6

1
.3

7
0

2
.1

1
0

1
.9

4
5

2
.7

5
5

8
0

.9
9

2
9

.6
8

4
.2

M
1

1
.6

M
7

3
.3

7

El
e

ct
ro

n
ic

1
0

7
1

6
1

4
3

6
0

3
6

5
9

1
9

5
7

2
.1

1
0

4
3

4
6

2
0

0
3

9
3

.6
2

0
1

2
.1

1
0

1
1

.8
7

2
1

6
.9

5
9

5
1

3
.2

6
1

8
1

.8
2

1
9

.3
M

4
9

.7
M

7
5

.1
5

D
o

lp
h

in
s

6
1

0
7

7
7

5
1

0
1

1
0

6
7

.1
2

5
1

0
3

6
0

.2
2

7
0

.0
1

5
0

.0
2

4
0

.0
2

5
0

.4
8

0
.2

8
0

.9
M

1
.3

M
2

2
8

.8
8

D
o

lp
h

in
s

7
5

5
0

4
2

8
6

3
3

8
6

9
.6

1
6

5
1

8
7

9
1

.3
3

8
0

.1
4

0
0

.1
7

4
0

.2
0

0
3

.1
8

2
.2

0
1

.8
M

2
.6

M
4

7
.8

8

D
o

lp
h

in
s

8
2

6
8

3
7

4
0

4
9

4
0

5
4

3
.3

9
6

0
2

3
7

9
8

.2
0

1
0

.7
3

3
1

.1
9

7
1

.3
7

0
2

0
.8

9
1

4
.8

7
9

.6
M

1
7

.2
M

4
4

.9
1

D
o

lp
h

in
s

9
1

2
4

9
5

8
3

3
3

9
9

6
3

3
1

2
.7

5
3

5
5

3
6

2
9

4
2

.3
7

9
4

.6
1

8
8

.4
0

3
8

.8
0

0
1

3
3

.2
4

9
6

.2
7

7
9

.8
M

1
7

0
.2

M
1

0
3

.1
5

D
o

lp
h

in
s

1
0

5
5

8
2

4
7

0
7

2
9

5
2

3
6

1
8

9
.1

2
8

3
4

6
3

1
1

0
2

2
0

.4
0

6
2

6
.6

2
8

8
1

.2
9

3
7

7
.2

0
0

1
0

9
6

.9
6

8
2

8
.1

5
6

3
8

.3
M

1
7

2
2

.0
M

2
5

5
.6

8

1
0

ra
n

d
o

m
n

e
tw

o
rk

s
w

e
re

u
se

d
in

al
le

xp
e

ri
m

e
n

ts
.T

o
sa

ve
th

e
ti

m
e

,w
e

u
se

le
ss

th
an

1
0

0
ra

n
d

o
m

n
e

tw
o

rk
s

h
e

re
.T

h
is

d
o

e
s

n
o

t
d

e
te

ri
o

ra
te

th
e

va
lid

it
y

o
f

re
su

lt
s,

b
e

ca
u

se
(1

)
u

n
d

ir
e

ct
e

d
n

e
tw

o
rk

s
ar

e
n

o
t

se
n

si
ti

ve
to

th
e

n
u

m
b

e
r

o
f

ra
n

d
o

m
n

e
tw

o
rk

s
as

ar
e

th
e

d
ir

e
ct

e
d

n
e

tw
o

rk
s

(p
le

as
e

se
e

fi
g

u
re

ô
8

)
an

d
(2

)
w

e
d

o
n

o
t

b
as

e
o

u
r

an
al

ys
is

an
d

co
m

p
ar

is
o

n
o

n
th

e
re

p
o

rt
e

d
to

ta
l

ti
m

e
,

b
u

t
o

n
th

e
e

q
u

al
it

y
p

o
in

ts
an

d
av

e
ra

g
e

ra
n

d
o

m
ce

n
su

s
ti

m
e

s,
w

h
ic

h
ar

e
in

d
e

p
e

n
d

e
n

t
o

f
th

e
to

ta
l

ti
m

e
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
6

8
0

7
3

.t
0

0
7

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 13 July 2013 | Volume 8 | Issue 7 | e68073

Generally, regarding the experiments the followings can be

concluded:

(1) QuateXelero is always faster in census on original networks

compared with ESU of G-Tries.

(2) QuateXelero is generally faster in census on random networks

for smaller motifs.

(3) G-Tries is in most of the cases (especially for directed

networks) faster in census on random networks for larger motif

sizes.

(4) QuateXelero is always better than ESU+G-Tries in the

experienced motif sizes on E.coli network regardless of the

number of random networks (negative ep) and probably would

dominant in larger motif sizes too.

(5) QuateXelero is generally better than ESU+G-Tries for

smaller motif sizes.

(6) QuateXelero surpasses ESU+G-Tries in most of our exper-

iments for larger motif sizes in directed networks, however,it

seems that ESU+G-Tries will be better for larger sizes not

achievable with facilities available to the authors.

(7) For undirected networks, QuateXelero surpasses ESU+G-

Tries in smaller and seemingly larger motifs, however,

ESU+G-Tries is better for medium size motifs.

There are two points that should be noted here. First, regarding

the exponential growth in occupied memory, it seems infeasible to

go further in motif size than what we have done, since it requires

huge amounts of memory found only in limited scales in super-

computers. Second, most of the current researches focus on motifs

of size under 8, because the dynamical features of bigger motifs are

yet unknown. Accordingly, the performed tests seem to be

sufficient to provide reliable data.

For small size experiments, we employed a laptop computer

with Intel CoreTM 2 Duo CPU 2.5 GHz and 4 GB of RAM. For

larger experiments, a master node of model Quad-Core AMD

Opteron TM Processor 2384 800 MHz with 64 GB main memory

was used. The experiments for each network were conducted up to

as large motif size as possible. However, some experiments were

limited to the available memory and time. Generally, QuateXelero

was mainly limited by the available memory while ESU+G-Tries

was sometimes limited by time and sometimes by memory. These

limitations and their details are listed in Table 8. Since the tests

lasting more than 48 hours were cancelled, two first cases indicated

in Table 8 were not completed. Accordingly, the results displayed

in Table 6 for ESU+G-Tries in the case of finding motifs of size 9

in Yeast transcription network were estimated. The estimation was

performed regarding results shown in Table 5. For this aim, the

ratios of times used by QuateXelero for census on original and

random networks to those times for ESU+G-Tries were traced

regarding the values in Table 5. Then, we extrapolated these ratios

for size 9 according to the trends recorded for sizes 5 to 7. Finally,

by simply dividing the real times registered for QuateXelero by the

extrapolated ratios, the estimated times for G-Tries were

calculated.

Conclusions and Future Works
Network motif detection is a challenging problem regarding the

computational time and memory it requires and there have been

remarkable efforts to solve it efficiently. This paper provides a new

solution for this problem which is claimed to be superior in terms

of processing time to the existing solutions in special cases. This

claim is approved with respect to the experimental results on some

standard complex networks. The results of comparing the

proposed algorithm, namely QuateXelero, with the well-known

existing method Kavosh indicated the superiority of it to Kavosh

in all cases regarding processing time. But QuateXelero uses a

massive amount of memory compared with Kavosh. Another

more important analysis was the comparison against ESU+G-

Tries algorithm (ESU option of G-Tries algorithm). Generally, the

Figure 9. Trends of random network census time ratio (left) and Equality Point (right) for undirected networks. The ratio in the left
chart indicates the ratio of average time spent by QuateXelero for census on random networks to the same time required for G-Tries.
doi:10.1371/journal.pone.0068073.g009

Table 8. Experimental Limitations.

Network Motif Size Algorithm Stopping Reason

Yeast 9 ESU+G-Tries Long run time (close to 11 days)

Yeast 10 QX Long run time (about 26 days)

Social 12 G-Tries Memory

Social 12 QX Memory

E.coli 12 G-Tries Memory

E.coli 11 QX Memory

Electronic 12 G-Tries Core Dumped

Electronic 13 QX Memory

Electronic (Undir) 11 G-Tries Core Dumped

doi:10.1371/journal.pone.0068073.t008

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 14 July 2013 | Volume 8 | Issue 7 | e68073

results indicate that QuateXelero is always much faster than ESU

of G-Tries in constructing the central data structure (i.e., the

census on the original network), but slower in the census on

random networks for larger motif sizes in most of the directed

cases. The results for undirected networks illustrate the superiority

of QuateXelero in small and probabily large motif detection, but

not in the medium size problems. Furthermore, while QuateX-

elero is faster in most of the attempted experiences, but it seems

that two algorithms, QuateXelero and ESU+G-Tries, will

converge and the situation will be reverse when the size of the

directed motif is set to numbers greater than those tested here.

However, it should be noted that greater motifs are only detectable

by using huge main memories, which might be only found in

special super-computers. Moreover, current research does not

exhibit a tendency towards larger motifs that what we have

discussed.

Anyway, the proposed algorithm still seems to be improvable.

With respect to the above, the future works can be focused on

comparing the other options of G-Tries algorithm with the

equivalent options in QuateXelero. Besides, combining the

strength points of QuateXelero (e.g., faster census on original

network) with the strength points of G-Tries (e.g., generally faster

census on random networks and less memory occupation), to

achieve a more efficient motif detection tool for solving problems

in which the motif size is large and so other options are infeasible is

another topic for further reseach. Furthermore, the question

‘‘When is QuateXelero faster than G-Tries or vice versa in the

census on random networks?’’ is not answered completely yet. So,

another point of focus can be the development of a strategy for

choosing the appropriate method between two algorithms for

census on random networks in processing a particular input

network. Finally, one can use more compact data structures to

compress the size of constructed quaternary tree to improve the

memory complexity of QuateXelero.

Implementation and Availability
QuateXelero is implemented in C++ programming language

under Linux operating system. The program is also applicable

under Windows (please refer to help file). The source code and

sample networks are available for download at: http://lbb.ut.ac.

ir/Download/LBBsoft/QuateXelero/.

Acknowledgments

AMN would like to appreciate DAAD visiting professorship research

program in Frankfurt University. The authors also acknowledge supports

of Dr. Pedro Ribeiro from University of Porto, Portugal for providing the

source code of G-Tries and his invaluable comments on improving the

manuscript.

Author Contributions

Conceived and designed the experiments: AMN SK. Performed the

experiments: SK IS ND. Analyzed the data: SK. Contributed reagents/

materials/analysis tools: IK. Wrote the paper: SK AMN IK.

References

1. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network

motifs: simple building blocks of complex networks. Science 298: 824–827.
2. Dekel E, Mangan S, Alon U (2005) Environmental selection of the feed-forward

loop circuit in gene-regulation networks. Physical biology 2: 81–88.
3. Zabet NR (2011) Negative feedback and physical limits of genes. Journal of

theoretical biology 284: 82–91.
4. Mangan S, Alon U (2003) Structure and function of the feed-forward loop

network motif. Proceedings of the National Academy of Sciences of the United

States of America 100: 11980–11985.
5. Wernicke S, Rasche F (2006) FANMOD: a tool for fast network motif detection.

Bioinformatics 22: 1152–1153.
6. Kashani ZR, Ahrabian H, Elahi E, Nowzari-Dalini A, Ansari ES, et al. (2009)

Kavosh: a new algorithm for finding network motifs. BMC bioinformatics 10:

318.
7. Grochow JA, Kellis M (2007) Network Motif Discovery Using Sub-graph

Enumeration and Symmetry-Breaking. RECOMB. 92–106.
8. Ribeiro P, Silva F (2010) G-Tries: an efficient data structure for discovering

network motifs. 25th ACM Symposium on Applied Computing - Bioinformatics

and Computational Systems Biology Track, Sierre, Switzerland.
9. Wang J, Huang Y, Wu FX, Pan Y (2012) Symmetry Compression method for

Discovering Network Motifs. IEEE/ACM transactions on computational
biology and bioinformatics/IEEE, ACM 10A02234-FB2C-42D1-AE5A-

CA813BF34133.
10. Beber ME, Fretter C, Jain S, Sonnenschein N, Muller-Hannemann M, et al.

(2012) Artefacts in statistical analyses of network motifs: general framework and

application to metabolic networks. Journal of the Royal Society, Interface/the
Royal Society 9: 3426–3435.

11. Omidi S, Schreiber F, Masoudi-Nejad A (2009) MODA: an efficient algorithm

for network motif discovery in biological networks. Genes & genetic systems 84:

385–395.

12. Brendan M (1981) Practical Graph Isomorphism. Congressus Numerantium 30:

45–87.

13. Ribeiro P, Silva F, Kaiser M (2009) Strategies for Network Motifs Discovery.

Fifth IEEE International Conference on e-Science. 80–87.

14. Darga P, Sakallah K, Markov IL (2008) Faster Symmetry Discovery using

Sparsity of Symmetries. The 45st Design Automation Conference. 149–154.

15. Junttila T, Kaski P (2007) Engineering an efficient canonical labeling tool for

large and sparse graphs. the Ninth Workshop on Algorithm Engineering and

Experiments (ALENEX07).

16. The E.coli Database. Available: http://www.kegg.com/

17. The S. cerevisiae Database. Available: http://www.weizmann.ac.il/mcb/

UriAlon/

18. Bu D, Zhao Y, Cai L, Xue H, Zhu X, et al. (2003) Topological structure analysis

of the protein-protein interaction network in budding yeast. Nucleic acids

research 31: 2443–2450.

19. Batagelj M, Mrvar A (2006) Pajek Datasets. Available: http://vlado.fmf.uni-lj.si/

pub/networks/data/

20. Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E., et al. (2003) The

bottlenose dolphin community of doubtful sound features a large proportion of

long-lasting associations. can geographic isolation explain this unique trait?

Behavioral Ecology and Sociobiology 54: 396–405.

21. Newman M (2009) Network Data. Available: http://www-personal.umich.edu/

m̃ejn/netdata/

Accelerated Network Motif Finding

PLOS ONE | www.plosone.org 15 July 2013 | Volume 8 | Issue 7 | e68073

