4,870 research outputs found

    Cation composition effects on oxide conductivity in the Zr_2Y_2O_7-Y_3NbO_7 system

    Full text link
    Realistic, first-principles-based interatomic potentials have been used in molecular dynamics simulations to study the effect of cation composition on the ionic conductivity in the Zr2Y2O7-Y3NbO7 system and to link the dynamical properties to the degree of lattice disorder. Across the composition range, this system retains a disordered fluorite crystal structure and the vacancy concentration is constant. The observed trends of decreasing conductivity and increasing disorder with increasing Nb5+ content were reproduced in simulations with the cations randomly assigned to positions on the cation sublattice. The trends were traced to the influences of the cation charges and relative sizes and their effect on vacancy ordering by carrying out additional calculations in which, for example, the charges of the cations were equalised. The simulations did not, however, reproduce all the observed properties, particularly for Y3NbO7. Its conductivity was significantly overestimated and prominent diffuse scattering features observed in small area electron diffraction studies were not always reproduced. Consideration of these deficiencies led to a preliminary attempt to characterise the consequence of partially ordering the cations on their lattice, which significantly affects the propensity for vacancy ordering. The extent and consequences of cation ordering seem to be much less pronounced on the Zr2Y2O7 side of the composition range.Comment: 22 pages, 8 figures, submitted to Journal of Physics: Condensed Matte

    High-pressure behaviour of GeO2: a simulation study

    Full text link
    In this work we study the high pressure behaviour of liquid and glassy GeO2 by means of molecular dynamics simulations. The interaction potential, which includes dipole polarization effects, was parameterized from first-principles calculations. Our simulations reproduce the most recent experimental data to a high degree of precision. The proportion of the various GeOn polyhedra is determined as a function of the pressure: a smooth transition from tetrahedral to octahedral network is observed. Finally, the study of high-pressure, liquid germania confirms that this material presents an anomalous behaviour of the diffusivity as observed in analog systems such as silica and water. The importance of penta-coordinated germanium ions for such behaviour is stressed.Comment: 16 pages, 4 figures, accepted as a Fast Track Communication on Journal of Physics: Condensed Matte

    The Angular Momentum Evolution of 0.1-10 Msun Stars From the Birthline to the Main Sequence

    Full text link
    (Abridged) Projected rotational velocities (vsini) have been measured for a sample of 145 stars with masses between 0.4 and >10 Msun (median mass 2.1 Msun) located in the Orion star-forming complex. These measurements have been supplemented with data from the literature for Orion stars with masses as low as 0.1 Msun. The primary finding from analysis of these data is that the upper envelope of the observed values of angular momentum per unit mass (J/M) varies as M^0.25 for stars on convective tracks having masses in the range ~0.1 to ~3 Msun. This power law extends smoothly into the domain of more massive stars (3 to 10 Msun), which in Orion are already on the ZAMS. This result stands in sharp contrast to the properties of main sequence stars, which show a break in the power law and a sharp decline in J/M with decreasing mass for stars with M <2 Msun. A second result of our study is that this break is seen already among the PMS stars in our Orion sample that are on radiative tracks, even though these stars are only a few million years old. A comparison of rotation rates seen for stars on either side of the convective-radiative boundary shows that stars do not rotate as solid bodies during the transition from convective to radiative tracks.Comment: to appear in Ap

    Using soil function evaluation in multi-criteria decision analysis for sustainability appraisal of remediation alternatives

    Get PDF
    Soil contamination is one of the major threats constraining proper functioning of the soil and thus provision of ecosystem services. Remedial actions typically only address the chemical soil quality by reducing total contaminant concentrations to acceptable levels guided by land use. However, emerging regulatory requirements on soil protection demand a holistic view on soil assessment in remediation projects thus accounting for a variety of soil functions. Such a view would require not only that the contamination concentrations are assessed and attended to, but also that other aspects are taking into account, thus addressing also physical and biological as well as other chemical soil quality indicators (SQIs). This study outlines how soil function assessment can be a part of a holistic sustainability appraisal of remediation alternatives using multi-criteria decision analysis (MCDA). The paper presents a method for practitioners for evaluating the effects of remediation alternatives on selected ecological soil functions using a suggested minimum data set (MDS) containing physical, biological and chemical SQIs. The measured SQls are transformed into sub-scores by the use of scoring curves, which allows interpretation and the integration of soil quality data into the MCDA framework. The method is demonstrated at a study site (Marieberg, Sweden) and the results give an example of how soil analyses using the suggested MDS can be used for soil function assessment and subsequent input to the MCDA framework

    On preparing for the great gift of community that climate disasters can give us

    Get PDF
    There is a widespread (if rarely voiced) assumption, among those who dare to understand the future which climate chaos is likely to yield, that civility will give way and a Hobbesian war of all against all will be unleashed. Thankfully, this assumption is highly questionable. The field of ‘Disaster Studies’, as shown in Rebecca Solnit’s A Paradise Built in Hell, makes clear that it is at least as likely that, tested in the crucible of back-to-back disasters, humanity will rise to the challenge, and we will find ourselves manifesting a truer humanity than we currently think ourselves to have. Thus the post-sustainability world will offer us a tremendous gift amidst the carnage. But how well we realise this gift depends on our preparing the way for it. In order to prepare, the fantasy of sustainable development needs to be jettisoned, along with the bargain-making mentality underpinning it. Instead, the inter-personal virtues of generosity, fraternity and care-taking need fostering. One role a philosophically informed deep reframing can play in this process of virtuous preparation for disaster is in helping people to understand that, in order to care for their children, they need to care for their children in turn, and so on, ad infinitum

    C-type related order in the defective fluorites La2Ce2O7 and Nd2Ce2O7 studied by neutron scattering and ab initio MD simulations

    Get PDF
    This work presents a structural investigation of La2-xNdxCe2O7 (x = 0.0, 0.5, 1.0, 1.5, 2.0) using X-ray powder diffraction and total scattering neutron powder diffraction, analysed using Rietveld and the reverse Monte Carlo method (RMC). Ab initio molecular dynamics (MD) modelling is also performed for further investigations of the local order. The main intensities in the neutron diffraction data for the La2-xNdxCe2O7 series correspond to the fluorite structure. However, additional C-type superlattice peaks are visible for x > 0 and increase in intensity with increasing x. The Nd-containing compositions (x > 0) are best fitted with Rietveld analysis by using a combination of oxygen deficient fluorite and oxygen excess C-type structures. No indications of cation order are found in the RMC or Rietveld analysis, and the absence of cation order is supported by the MD modelling. We argue that the superlattice peaks originate from oxygen vacancy ordering and associated shift in the cation position away from the ideal fluorite site similar to that in the C-type structure, which is seen from the Rietveld refinements and the observed ordering in the MD modelling. The vacancies favour alignments in the , and especially the direction. Moreover, we find that such ordering might also be found to a small extent in La2Ce2O7, explaining the discernible modulated background between the fluorite peaks. The observed overlap of the main Bragg peaks between the fluorite and C-type phase supports the co-existence of vacancy ordered and more disordered domains. This is further supported by the observed similarity of the radial distribution functions as modelled with MD. The increase in long range oxygen vacancy order with increasing Nd-content in La2-xNdxCe2O7 corresponds well with the lower oxide ion conductivity in Nd2Ce2O7 compared to La2Ce2O7 reported earlier

    High-Mass Proto-Stellar Candidates - I : The Sample and Initial Results

    Full text link
    We describe a systematic program aimed at identifying and characterizing candidate high-mass proto-stellar objects (HMPOs). Our candidate sample consists of 69 objects selected by criteria based on those established by Ramesh & Sridharan (1997) using far-infrared, radio-continuum and molecular line data. Infrared-Astronomical-Satellite (IRAS) and Midcourse-Space-Experiment (MSX) data were used to study the larger scale environments of the candidate sources and to determine their total luminosities and dust temperatures. To derive the physical and chemical properties of our target regions, we observed continuum and spectral line radiation at millimeter and radio wavelengths. We imaged the free-free and dust continuum emission at wavelengths of 3.6 cm and 1.2 mm, respectively, searched for H2O and CH3OH maser emission and observed the CO 2-1 and several NH3 lines toward all sources in our sample. Other molecular tracers were observed in a subsample. The presented results indicate that a substantial fraction of our sample harbors HMPOs in a pre-UCHII region phase, the earliest known stage in the high-mass star formation process.Comment: 16 pages, 11 eps-figures. Astrophysical Journal, in pres

    Galaxy And Mass Assembly (GAMA) : galaxy close pairs, mergers and the future fate of stellar mass

    Get PDF
    ASGR acknowledges STFC and SUPA funding that were used to do this work. GAMA is funded by the STFC (UK), the ARC (Australia), the AAO and the participating institutions.We use a highly complete subset of the Galaxy And Mass Assembly II (GAMA-II) redshift sample to fully describe the stellar mass dependence of close pairs and mergers between 10(8) and 10(12)M(circle dot). Using the analytic form of this fit we investigate the total stellar mass accreting on to more massive galaxies across all mass ratios. Depending on how conservatively we select our robust merging systems, the fraction of mass merging on to more massive companions is 2.0-5.6 per cent. Using the GAMA-II data we see no significant evidence for a change in the close pair fraction between redshift z = 0.05 and 0.2. However, we find a systematically higher fraction of galaxies in similar mass close pairs compared to published results over a similar redshift baseline. Using a compendium of data and the function gamma(M) = A(1 + z)(m) to predict the major close pair fraction, we find fitting parameters of A = 0.021 +/- 0.001 and m = 1.53 +/- 0.08, which represents a higher low-redshift normalization and shallower power-law slope than recent literature values. We find that the relative importance of in situ star formation versus galaxy merging is inversely correlated, with star formation dominating the addition of stellar material below M* and merger accretion events dominating beyond M*. We find mergers have a measurable impact on the whole extent of the galaxy stellar mass function (GSMF), manifest as a deepening of the 'dip' in the GSMF over the next similar to Gyr and an increase in M* by as much as 0.01-0.05 dex.Publisher PDFPeer reviewe

    Transit flow models for low and high mass protostars

    Full text link
    In this work, the gas infall and the formation of outflows around low and high mass protostars are investigated. A radial self-similar approach to model the transit of the molecular gas around the central object is employed. We include gravitational and radiative fields to produce heated pressure-driven outflows with magneto-centrifugal acceleration and collimation. Outflow solutions with negligible or vanishing magnetic field are reported. They indicate that thermodynamics is a sufficient engine to generate an outflow. The magnetized solutions show dynamically significant differences in the axial region, precisely where the radial velocity and collimation are the largest. They compare quantitatively well with observations. The influence of the opacity on the transit solutions is also studied. It is found that, when dust is not the dominant coolant, such as in the primordial universe, mass infall rates have substantial larger values in the equatorial region. This suggests that star forming in a dust-free environment should be able to accrete much more mass and become more massive than present day protostars.It is also suggested that molecular outflows may be dominated by the global transit of material around the protostar during the very early stages of star formation, especially in the case of massive or dust-free star formation.Comment: 19 pages, 15 figures, accepted by Ap
    corecore