89 research outputs found

    Established and Emerging Approaches for the Management of Dyslipidaemia

    Get PDF
    The key role of dyslipidaemia in determining cardiovascular disease (CVD) has been proved beyond reasonable doubt, and therefore several dietary and pharmacological approaches have been developed. The discovery of statins has provided a very effective approach in reducing cardiovascular risk as documented by the results obtained in clinical trials and in clinical practice. The current efficacy of statins or other drugs, however, comes short of providing the benefit that could derive from a further reduction of LDL cholesterol (LDL-C) in high-risk and very high risk patients. Furthermore, experimental data clearly suggest that other lipoprotein classes beyond LDL play important roles in determining cardiovascular risk. For these reasons a number of new potential drugs are under development in this area. Aim of this review is to discuss the available and the future pharmacological strategies for the management of dyslipidemia

    New targets and developments in lipoproteins control

    Get PDF
    Giuseppe Danilo Norata1–31Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy; 2Center for the Study of Atherosclerosis, Società Italiana Studio Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy; 3The Blizard Institute, Centre for Diabetes, Barts and The London School of Medicine and Dentistry, Queen Mary University, London, UKAbstract: Statins provide a very effective approach in reducing plasma cholesterol levels and cardiovascular risk. However, the proportion of patients who fail to achieve desirable plasma lipid levels ranges from 16%–53%, worldwide. This percentage reaches up to 80% in patients with familial hypercholesterolemia. Additionally, many patients are unable to tolerate statins, particularly at the highest approved dose level. New treatments that aggressively reduce lipid levels in patients with severe hypercholesterolemia, or those unable to reach their lipid targets, are therefore required. The most promising approaches in this context, such as inhibitors of the synthesis of apolipoprotein B (apoB) containing lipoproteins (apoB silencing or microsomal triglyceride transfer protein [MTP] inhibition) or proprotein convertase subtilisin/kexin type 9 (PCSK9) blockers, all decrease low-density lipoprotein (LDL) extensively. Increasing low levels of high-density lipoprotein (HDL) cholesterol via cholesteryl ester transfer protein inhibitors or apolipoprotein A-1 (ApoA-1) inducers and improving their quality with HDL or ApoA-1 mimetics represent also important options. Drugs affecting HDL, however, may not be all alike and require adequate scrutiny of the mechanisms involved. Until we have a better understanding of these issues, further LDL lowering in high-risk patients represents the soundest approach.Keywords: apolipoproteins, lipids, lipoprotein classes, hypercholesterolemia, synthesis, LDL lowerin

    Impact of asialoglycoprotein receptor and mannose receptor deficiency on murine plasma N-glycome profiles

    Get PDF
    The asialoglycoprotein receptor (ASGPR) and the mannose receptor C -type 1 (MRC1) are well known for their selective recognition and clearance of circulating glycoproteins. Terminal galactose and N-Acetylgalactosamine are recognized by ASGPR, while terminal mannose, fucose, and N-Acetylglucosamine are recognized by MRC1. The effects of ASGPR and MRC1 deficiency on the N-glycosylation of individual circulating proteins have been studied. However, the impact on the homeostasis of the major plasma glycoproteins is debated and their glycosylation has not been mapped with high molecular resolution in this context. Therefore, we evaluated the total plasma N-glycome and plasma proteome of ASGR1 and MRC1 deficient mice. ASGPR deficiency resulted in an increase in O-acetylation of sialic acids accompanied by higher levels of apolipoprotein D, haptoglobin, and vitronectin. MRC1 deficiency decreased fucosylation without affecting the abundance of the major circulating glycoproteins. Our findings confirm that concentrations and Nglycosylation of the major plasma proteins are tightly controlled and further suggest that glycan-binding receptors have redundancy, allowing compensation for the loss of one major clearance receptor.Proteomic

    Pentraxin 3 deficiency protects from the metabolic inflammation associated to diet-induced obesity

    Get PDF
    Aims: Low-grade chronic inflammation characterizes obesity and metabolic syndrome. Here, we aim at investigating the impact of the acute-phase protein long pentraxin 3 (PTX3) on the immune-inflammatory response occurring during diet-induced obesity. Methods and results: PTX3 deficiency in mice fed a high-fat diet for 20 weeks protects from weight gain and adipose tissue deposition in visceral and subcutaneous depots. This effect is not related to changes in glucose homeostasis and lipid metabolism but is associated with an improved immune cell phenotype in the adipose tissue of Ptx3 deficient animals, which is characterized by M2-macrophages polarization and increased angiogenesis. These findings are recapitulated in humans where carriers of a PTX3 haplotype (PTX3 h2/h2 haplotype), resulting in lower PTX3 plasma levels, presented with a reduced prevalence of obesity and decreased abdominal adiposity compared with non-carriers. Conclusion: Our results support a critical role for PTX3 in the onset of obesity by promoting inflammation and limiting adipose tissue vascularization and delineate PTX3 targeting as a valuable strategy for the treatment of adipose tissue-associated inflammatory response

    PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor

    Get PDF
    Aims PCSK9 loss of function genetic variants are associated with lower low-density lipoprotein cholesterol but also with higher plasma glucose levels and increased risk of Type 2 diabetes mellitus. Here, we investigated the molecular mechanisms underlying this association. Methods and results Pcsk9 KO, WT, Pcsk9/Ldlr double KO (DKO), Ldlr KO, albumin AlbCre+/Pcsk9LoxP/LoxP (liver-selective Pcsk9 knock-out mice), and AlbCre-/Pcsk9LoxP/LoxP mice were used. GTT, ITT, insulin and C-peptide plasma levels, pancreas morphology, and cholesterol accumulation in pancreatic islets were studied in the different animal models. Glucose clearance was significantly impaired in Pcsk9 KO mice fed with a standard or a high-fat diet for 20\u2009weeks compared with WT animals; insulin sensitivity, however, was not affected. A detailed analysis of pancreas morphology of Pcsk9 KO mice vs. controls revealed larger islets with increased accumulation of cholesteryl esters, paralleled by increased insulin intracellular levels and decreased plasma insulin, and C-peptide levels. This phenotype was completely reverted in Pcsk9/Ldlr DKO mice implying the low-density lipoprotein receptor (LDLR) as the proprotein convertase subtilisin/kexin Type 9 (PCSK9) target responsible for the phenotype observed. Further studies in albumin AlbCre+/Pcsk9LoxP/LoxP mice, which lack detectable circulating PCSK9, also showed a complete recovery of the phenotype, thus indicating that circulating, liver-derived PCSK9, the principal target of monoclonal antibodies, does not impact beta-cell function and insulin secretion. Conclusion PCSK9 critically controls LDLR expression in pancreas perhaps contributing to the maintenance of a proper physiological balance to limit cholesterol overload in beta cells. This effect is independent of circulating PCSK9 and is probably related to locally produced PCSK9

    Translational opportunities of single-cell biology in atherosclerosis

    Get PDF
    The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD

    Atorvastatin induces associated reductions in platelet P-selectin, oxidized low-density lipoprotein, and interleukin-6 in patients with coronary artery diseases.

    Get PDF
    The development and progression of atherosclerosis comprises various processes, such as endothelial dysfunction, chronic inflammation, thrombus formation, and lipid profile modification. Statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors that have pleiotropic effects in addition to cholesterol-lowering properties. However, the mechanisms of these effects are not completely understood. Here, we investigated whether atorvastatin affects the levels of malondialdehyde-modified low-density lipoprotein (MDALDL), an oxidized LDL, the proinflammatory cytokine interleukin-6 (IL-6), or platelet P-selectin, a marker of platelet activation, relative to that of LDL cholesterol (LDL-C). Forty-eight patients with coronary artery disease and hyperlipidemia were separated into two groups that were administered with (atorvastatin group) or without (control group) atorvastatin. The baseline MDA-LDL level in all participants significantly correlated with LDL-C (r = 0.71, P < 0.01) and apolipoprotein B levels (r = 0.66, P < 0.01). Atorvastatin (10 mg/day) significantly reduced the LDL-C level within 4 weeks and persisted for a further 8 weeks of administration. Atorvastatin also reduced the MDA-LDL level within 4 weeks and further reduced it over the next 8 weeks. Platelet P-selectin expression did not change until 4 weeks of administration and then significantly decreased at 12 weeks, whereas the IL-6 level was gradually, but not significantly, reduced at 12 weeks. In contrast, none of these parameters significantly changed in the control group within these time frames. The reduction (%) in IL-6 between 4 and 12 weeks after atorvastatin administration significantly correlated with that of MDALDL and of platelet P-selectin (r = 0.65, P < 0.05 and r = 0.70, P < 0.05, respectively). These results suggested that the positive effects of atorvastatin on the LDL-C oxidation, platelet activation and inflammation that are involved in atherosclerotic processes are exerted in concert after lowering LDL-C
    • …
    corecore