35 research outputs found

    I-ApeI: a novel intron-encoded LAGLIDADG homing endonuclease from the archaeon, Aeropyrum pernix K1

    Get PDF
    Over 50 introns have been reported in archaeal rRNA genes (rDNAs), a subset of which nests putative homing endonuclease (HEase) genes. Here, we report the identification and characterization of a novel archaeal LAGLIDADG-type HEase, I-ApeI, encoded by the ApeK1.S908 intron within the 16S rDNA of Aeropyrum pernix K1. I-ApeI consists of 222 amino acids and harbors two LAGLIDADG-like sequences. It recognizes the 20 bp non-palindromic sequence 5′-GCAAGGCTGAAAC↓TTAAAGG and cleaves target DNA to produce protruding tetranucleotide 3′ ends. Either Mn(2+) or Co(2+) can be substituted for Mg(2+) as a cofactor in the cleavage reaction. Of the 20 bases within the minimal recognition site, 7 are essential for cleavage and are located at positions proximal to the cleavage sites

    Recognition of a common rDNA target site in archaea and eukarya by analogous LAGLIDADG and His–Cys box homing endonucleases

    Get PDF
    The presence of a homing endonuclease gene (HEG) within a microbial intron or intein empowers the entire element with the ability to invade genomic targets. The persistence of a homing endonuclease lineage depends in part on conservation of its DNA target site. One such rDNA sequence has been invaded both in archaea and in eukarya, by LAGLIDADG and His–Cys box homing endonucleases, respectively. The bases encoded by this target include a universally conserved ribosomal structure, termed helix 69 (H69) in the large ribosomal subunit. This region forms the ‘B2a’ intersubunit bridge to the small ribosomal subunit, contacts bound tRNA in the A- and P-sites, and acts as a trigger for ribosome disassembly through its interactions with ribosome recycling factor. We have determined the DNA-bound structure and specificity profile of an archaeal LAGLIDADG homing endonuclease (I-Vdi141I) that recognizes this target site, and compared its specificity with the analogous eukaryal His–Cys box endonuclease I-PpoI. These homodimeric endonuclease scaffolds have arrived at similar specificity profiles across their common biological target and analogous solutions to the problem of accommodating conserved asymmetries within the DNA sequence, but with differences at individual base pairs that are fine-tuned to the sequence conservation of archaeal versus eukaryal ribosomes

    Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    Get PDF
    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology

    The intervening removable affinity tag (iRAT) production system facilitates Fv antibody fragment-mediated crystallography

    Get PDF
    Fv antibody fragments have been used as co-crystallization partners in structural biology, particularly in membrane protein crystallography. However, there are inherent technical issues associated with the large-scale production of soluble, functional Fv fragments through conventional methods in various expression systems. To circumvent these problems, we developed a new method, in which a single synthetic polyprotein consisting of a variable light (VL) domain, an intervening removable affinity tag (iRAT), and a variable heavy (VH) domain is expressed by a Gram-positive bacterial secretion system. This method ensures stoichiometric expression of VL and VH from the monocistronic construct followed by proper folding and assembly of the two variable domains. The iRAT segment can be removed by a site-specific protease during the purification process to yield tag-free Fv fragments suitable for crystallization trials. In vitro refolding step is not required to obtain correctly folded Fv fragments. As a proof of concept, we tested the iRAT-based production of multiple Fv fragments, including a crystallization chaperone for a mammalian membrane protein as well as FDA-approved therapeutic antibodies. The resulting Fv fragments were functionally active and crystallized in complex with the target proteins. The iRAT system is a reliable, rapid and broadly applicable means of producing milligram quantities of Fv fragments for structural and biochemical studies

    High-resolution crystal structure of the therapeutic antibody pembrolizumab bound to the human PD-1

    Get PDF
    Pembrolizumab is an FDA-approved therapeutic antibody that targets the programmed cell death-1 (PD-1) to block the immune checkpoint pathway for the treatment of various types of cancer. It receives remarkable attention due to the high degree of efficacy. Very recently, the crystal structure of the Fab fragment of pembrolizumab (PemFab) in complex with the extracellular domain of human PD-1 (PD-1ECD) was reported at a resolution of 2.9 Å. However, this relatively low-resolution structural data fails to provide sufficient information on interfacial water molecules at the binding interface that substantially contribute to affinity and specificity between the therapeutic antibody and target. Here, we present the independently determined crystal structure of the Fv fragment of pembrolizumab (PemFv) in complex with the PD-1ECD at a resolution of 2.15 Å. This high-resolution structure allows the accurate mapping of the interaction including water-mediated hydrogen bonds and provides, for the first time, a coherent explanation of PD-1 antagonism by pembrolizumab. Our structural data also provides new insights into the rational design of improved anti-PD-1 therapeutics

    Proteoliposome-based Selection of a Recombinant Antibody Fragment Against the Human M2 Muscarinic Acetylcholine Receptor.

    Get PDF
    The development of antibodies against human G-protein-coupled receptors (GPCRs) has achieved limited success, which has mainly been attributed to their low stability in a detergent-solubilized state. We herein describe a method that can generally be applied to the selection of phage display libraries with human GPCRs reconstituted in liposomes. A key feature of this approach is the production of biotinylated proteoliposomes that can be immobilized on the surface of streptavidin-coupled microplates or paramagnetic beads and used as a binding target for antibodies. As an example, we isolated a single chain Fv fragment from an immune phage library that specifically binds to the human M2 muscarinic acetylcholine receptor with nanomolar affinity. The selected antibody fragment recognized the GPCR in both detergent-solubilized and membrane-embedded forms, which suggests that it may be a potentially valuable tool for structural and functional studies of the GPCR. The use of proteoliposomes as immunogens and screening bait will facilitate the application of phage display to this difficult class of membrane proteins

    IgG4-Related Airway Involvement Which Developed in a Patient Receiving Corticosteroid Therapy for Autoimmune Pancreatitis

    Get PDF
    A 66-year-old man was diagnosed with autoimmune pancreatitis in February 2009 and started 40 mg of oral prednisolone followed by a maintenance dose of 5 mg daily. The patient developed a cough in October 2010 and visited our division. He had a high serum concentration of immunoglobulin (Ig) G4 and his chest computed tomography showed airway stenosis without bilateral hilar lymphadenopathy (BHL). The bronchial biopsy specimens revealed lymphoplasmacytic infiltrations with IgG4-positive/IgG-positive plasma cells of more than 50%. Thus, we diagnosed the airway lesion with IgG4-related airway involvement. This is the first report of a patient with IgG4-related airway involvement without BHL.ArticleINTERNAL MEDICINE. 50(24):3023-3026 (2011)journal articl
    corecore