2,592 research outputs found

    The Connection between Gamma-Ray Bursts and Extremely Metal-Poor Stars as Nucleosynthetic Probes of the Early Universe

    Full text link
    The connection between the long GRBs and Type Ic Supernovae (SNe) has revealed the interesting diversity: (i) GRB-SNe, (ii) Non-GRB Hypernovae (HNe), (iii) X-Ray Flash (XRF)-SNe, and (iv) Non-SN GRBs (or dark HNe). We show that nucleosynthetic properties found in the above diversity are connected to the variation of the abundance patterns of extremely-metal-poor (EMP) stars, such as the excess of C, Co, Zn relative to Fe. We explain such a connection in a unified manner as nucleosynthesis of hyper-aspherical (jet-induced) explosions Pop III core-collapse SNe. We show that (1) the explosions with large energy deposition rate, E˙dep\dot{E}_{\rm dep}, are observed as GRB-HNe and their yields can explain the abundances of normal EMP stars, and (2) the explosions with small E˙dep\dot{E}_{\rm dep} are observed as GRBs without bright SNe and can be responsible for the formation of the C-rich EMP (CEMP) and the hyper metal-poor (HMP) stars. We thus propose that GRB-HNe and the Non-SN GRBs (dark HNe) belong to a continuous series of BH-forming stellar deaths with the relativistic jets of different E˙dep\dot{E}_{\rm dep}.Comment: 8 pages, 6 figures. To appear in "Massive Stars as Cosmic Engines", Proceedings of IAU Symposium 250 (December 2007, Kauai), eds. F. Bresolin, P.A. Crowther, & J. Puls (Cambridge Univ. Press

    Nucleosynthesis in Type II Supernovae

    Get PDF
    Presupernova evolution and explosive nucleosynthesis in massive stars for main-sequence masses from 13 M⊙M_\odot to 70 M⊙M_\odot are calculated. We examine the dependence of the supernova yields on the stellar mass, ^{12}C(\alpha, \gamma) ^{16}O} rate, and explosion energy. The supernova yields integrated over the initial mass function are compared with the solar abundances.Comment: 1 Page Latex source, 10 PostScript figures, to appear in Nuclear Physics A, Vol. A616 (1997

    Optical Spectropolarimetry and Asphericity of Type Ic SN 2007gr

    Full text link
    We present optical spectropolarimetric observations of Type Ic supernova (SN) 2007gr with Subaru telescope at 21 days after the maximum brightness (~37 days after the explosion). Non-zero polarization as high as ~3% is observed at the absorption feature of Ca II IR triplet. The polarization of the continuum light is ~0.5% if we estimate the interstellar polarization (ISP) component assuming that the continuum polarization has a single polarization angle. This suggests that the axis ratio of the SN photosphere projected to the sky is different from unity by ~10%. The polarization angle at the Ca II absorption is almost aligned to that of the continuum light. These features may be understood by the model where a bipolar explosion with an oblate photosphere is viewed from the slightly off-axis direction and explosively synthesized Ca near the polar region obscures the light originated around the minor axis of the SN photosphere. Given the uncertainty of the ISP, however, the polarization data could also be interpreted by the model with an almost spherically symmetric photosphere and a clumpy Ca II distribution.Comment: 9 pages, 8 figures, Accepted for publication in the Astrophysical Journa

    Multipole expansion for magnetic structures: A generation scheme for symmetry-adapted orthonormal basis set in crystallographic point group

    Get PDF
    We propose a systematic method to generate a complete orthonormal basis set of multipole expansion for magnetic structures in arbitrary crystal structure. The key idea is the introduction of a virtual atomic cluster of a target crystal, on which we can clearly define the magnetic configurations corresponding to symmetry-adapted multipole moments. The magnetic configurations are then mapped onto the crystal so as to preserve the magnetic point group of the multipole moments, leading to the magnetic structures classified according to the irreducible representations of crystallographic point group. We apply the present scheme to pyrhochlore and hexagonal ABO3 crystal structures, and demonstrate that the multipole expansion is useful to investigate the macroscopic responses of antiferromagnets

    Nucleosynthesis in Core-Collapse Supernovae and GRB--Metal-Poor Star Connection

    Get PDF
    We review the nucleosynthesis yields of core-collapse supernovae (SNe) for various stellar masses, explosion energies, and metallicities. Comparison with the abundance patterns of metal-poor stars provides excellent opportunities to test the explosion models and their nucleosynthesis. We show that the abundance patterns of extremely metal-poor (EMP) stars, e.g., the excess of C, Co, Zn relative to Fe, are in better agreement with the yields of hyper-energetic explosions (Hypernovae, HNe) rather than normal supernovae. We note that the variation of the abundance patterns of EMP stars are related to the diversity of the Supernova-GRB connection. We summarize the diverse properties of (1) GRB-SNe, (2) Non-GRB HNe/SNe, (3) XRF-SN, and (4) Non-SN GRB. In particular, the Non-SN GRBs (dark hypernovae) have been predicted in order to explain the origin of C-rich EMP stars. We show that these variations and the connection can be modeled in a unified manner with the explosions induced by relativistic jets. Finally, we examine whether the most luminous supernova 2006gy can be consistently explained with the pair-instability supernova model.Comment: 15 pages, 9 figures. To appear in "Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters", eds. S. Immler, K. Weiler, & R. McCray (American Institute of Physics) (2007

    Nucleosynthesis Basics and Applications to Supernovae

    Get PDF
    This review concentrates on nucleosynthesis processes in general and their applications to massive stars and supernovae. A brief initial introduction is given to the physics in astrophysical plasmas which governs composition changes. We present the basic equations for thermonuclear reaction rates and nuclear reaction networks. The required nuclear physics input for reaction rates is discussed, i.e. cross sections for nuclear reactions, photodisintegrations, electron and positron captures, neutrino captures, inelastic neutrino scattering, and beta-decay half-lives. We examine especially the present state of uncertainties in predicting thermonuclear reaction rates, while the status of experiments is discussed by others in this volume (see M. Wiescher). It follows a brief review of hydrostatic burning stages in stellar evolution before discussing the fate of massive stars, i.e. the nucleosynthesis in type II supernova explosions (SNe II). Except for SNe Ia, which are explained by exploding white dwarfs in binary stellar systems (which will not be discussed here), all other supernova types seem to be linked to the gravitational collapse of massive stars (M>>8M⊙_\odot) at the end of their hydrostatic evolution. SN1987A, the first type II supernova for which the progenitor star was known, is used as an example for nucleosynthesis calculations. Finally, we discuss the production of heavy elements in the r-process up to Th and U and its possible connection to supernovae.Comment: 52 pages, 20 figures, uses cupconf.sty (included); to appear in "Nuclear and Particle Astrophysics", eds. J. Hirsch., D. Page, Cambridge University Pres
    • 

    corecore