1,613 research outputs found

    Nucleosynthesis in Type Ia Supernovae

    Full text link
    Among the major uncertainties involved in the Chandrasekhar mass models for Type Ia supernovae are the companion star of the accreting white dwarf (or the accretion rate that determines the carbon ignition density) and the flame speed after ignition. We present nucleosynthesis results from relatively slow deflagration (1.5 - 3 % of the sound speed) to constrain the rate of accretion from the companion star. Because of electron capture, a significant amount of neutron-rich species such as ^{54}Cr, ^{50}Ti, ^{58}Fe, ^{62}Ni, etc. are synthesized in the central region. To avoid the too large ratios of ^{54}Cr/^{56}Fe and ^{50}Ti/^{56}Fe, the central density of the white dwarf at thermonuclear runaway must be as low as \ltsim 2 \e9 \gmc. Such a low central density can be realized by the accretion as fast as \dot M \gtsim 1 \times 10^{-7} M_\odot yr^{-1}. These rapidly accreting white dwarfs might correspond to the super-soft X-ray sources.Comment: 10 page LaTeX, 7 PostScript figures, to appear in Nuclear Physics A, Vol. A621 (1997

    Nucleosynthesis in Type II Supernovae

    Get PDF
    Presupernova evolution and explosive nucleosynthesis in massive stars for main-sequence masses from 13 M⊙M_\odot to 70 M⊙M_\odot are calculated. We examine the dependence of the supernova yields on the stellar mass, ^{12}C(\alpha, \gamma) ^{16}O} rate, and explosion energy. The supernova yields integrated over the initial mass function are compared with the solar abundances.Comment: 1 Page Latex source, 10 PostScript figures, to appear in Nuclear Physics A, Vol. A616 (1997

    Multipole expansion for magnetic structures: A generation scheme for symmetry-adapted orthonormal basis set in crystallographic point group

    Get PDF
    We propose a systematic method to generate a complete orthonormal basis set of multipole expansion for magnetic structures in arbitrary crystal structure. The key idea is the introduction of a virtual atomic cluster of a target crystal, on which we can clearly define the magnetic configurations corresponding to symmetry-adapted multipole moments. The magnetic configurations are then mapped onto the crystal so as to preserve the magnetic point group of the multipole moments, leading to the magnetic structures classified according to the irreducible representations of crystallographic point group. We apply the present scheme to pyrhochlore and hexagonal ABO3 crystal structures, and demonstrate that the multipole expansion is useful to investigate the macroscopic responses of antiferromagnets

    Imaginary-time method for radiative capture reaction rate

    Full text link
    We propose a new computational method for astrophysical reaction rate of radiative capture process. In the method, an evolution of a wave function is calculated along the imaginary-time axis which is identified as the inverse temperature. It enables direct evaluation of reaction rate as a function of temperature without solving any scattering problem. The method is tested for two-body radiative capture reaction, 16O(α,γ)20Ne{^{16}{\rm O}}(\alpha,\gamma){^{20}{\rm Ne}}, showing that it gives identical results to that calculated by the ordinary procedure. The new method will be suited for calculation of triple-alpha radiative capture rate for which an explicit construction of the scattering solution is difficult.Comment: 8 pages, 7 figure

    A protective role of gamma/delta T cells in primary infection with Listeria monocytogenes in mice.

    Get PDF
    We have previously reported that T cells bearing T cell receptors (TCRs) of gamma/delta type appear at a relatively early stage of primary infection with Listeria monocytogenes in mice. To characterize the early-appearing gamma/delta T cells during listeriosis, we analyzed the specificity and cytokine production of the gamma/delta T cells in the peritoneal cavity in mice inoculated intraperitoneally with a sublethal dose of L. monocytogenes. The early-appearing gamma/delta T cells, most of which were of CD4-CD8- phenotype, proliferated and secreted IFN-gamma and macrophage chemotactic factor in response to purified protein derivative from Mycobacterium tuberculosis, or recombinant 65-kD heat-shock protein derived from M. bovis but not to heat-killed Listeria. To further elucidate the potential role of the gamma/delta T cells in the host-defense mechanism against primary infection with Listeria, we examined the effects of in vivo administration of monoclonal antibodies (mAbs) against TCR-gamma/delta or TCR-alpha/beta on the bacterial eradication in mice infected with Listeria. Most of alpha/beta T cells or gamma/delta T cells were depleted in the peripheral lymphoid organs at least for 12 d after an intraperitoneal injection of 200 micrograms TCR-alpha/beta mAb or 200 micrograms TCR-gamma/delta mAb, respectively. An exaggerated bacterial multiplication was evident at the early stage of listerial infection in the gamma/delta T cells-depleted mice, whereas the alpha/beta T cell-depleted mice exhibited much the same resistance level as the control mice at this stage although the resistance was severely impaired at the late stage after listerial infection.(ABSTRACT TRUNCATED AT 250 WORDS

    Stability of the r-modes in white dwarf stars

    Get PDF
    Stability of the r-modes in rapidly rotating white dwarf stars is investigated. Improved estimates of the growth times of the gravitational-radiation driven instability in the r-modes of the observed DQ Her objects are found to be longer (probably considerably longer) than 6x10^9y. This rules out the possibility that the r-modes in these objects are emitting gravitational radiation at levels that could be detectable by LISA. More generally it is shown that the r-mode instability can only be excited in a very small subset of very hot (T>10^6K), rather massive (M>0.9M_sun) and very rapidly rotating (P_min<P<1.2P_min) white dwarf stars. Further, the growth times of this instability are so long that these conditions must persist for a very long time (t>10^9y) to allow the amplitude to grow to a dynamically significant level. This makes it extremely unlikely that the r-mode instability plays a significant role in any real white dwarf stars.Comment: 5 Pages, 5 Figures, revte

    Stellar Evolution Constraints on the Triple-Alpha Reaction Rate

    Full text link
    We investigate the quantitative constraint on the triple-alpha reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8 < M / Msun < 25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low- and intermediate-mass stars, while its influence on the evolution of massive stars (M >~ 10 Msun) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8 < M / Msun < 6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-alpha reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least nu > 10 at T = 1 - 1.2 x 10^8 K where the cross section is proportional to T^{nu}. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10^{-29} cm^6 s^{-1} mole^{-2} at ~ 10^{7.8} K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation. In an effort to compromise with the revised rates, we calculate and analyze models with enhanced CNO cycle reaction rates to increase the maximum luminosity of the first giant branch. However, it is impossible to reach the typical RGB tip luminosity even if all the reaction rates related to CNO cycles are enhanced by more than ten orders of magnitude.Comment: 14 pages, 8 figures, accepted by the Ap

    The r-Process in Supersonic Neutrino-Driven Winds: The Roll of Wind Termination Shock

    Full text link
    Recent hydrodynamic studies of core-collapse supernovae imply that the neutrino-heated ejecta from a nascent neutron star develops to supersonic outflows. These supersonic winds are influenced by the reverse shock from the preceding supernova ejecta, forming the wind termination shock. We investigate the effects of the termination shock in neutrino-driven winds and its roll on the r-process. Supersonic outflows are calculated with a semi-analytic neutrino-driven wind model. Subsequent termination-shocked, subsonic outflows are obtained by applying the Rankine-Hugoniot relations. We find a couple of effects that can be relevant for the r-process. First is the sudden slowdown of the temperature decrease by the wind termination. Second is the entropy jump by termination-shock heating, up to several 100NAk. Nucleosynthesis calculations in the obtained winds are performed to examine these effects on the r-process. We find that 1) the slowdown of the temperature decrease plays a decisive roll to determine the r-process abundance curves. This is due to the strong dependences of the nucleosynthetic path on the temperature during the r-process freezeout phase. Our results suggest that only the termination-shocked winds with relatively small shock radii (~500km) are relevant for the bulk of the solar r-process abundances (A~100-180). The heaviest part in the solar r-process curve (A~180-200), however, can be reproduced both in shocked and unshocked winds. These results may help to constrain the mass range of supernova progenitors relevant for the r-process. We find, on the other hand, 2) negligible roles of the entropy jump on the r-process. This is a consequence that the sizable entropy increase takes place only at a large shock radius (~10,000km) where the r-process has already ceased.Comment: 11 pages, 7 figures, submitted to ApJ, revised following referee's comments,Accepted for publication in Ap

    X-ray Evidence for Spectroscopic Diversity of Type Ia Supernovae: XMM observation of the elemental abundance pattern in M87

    Full text link
    We present the results of a detailed element abundance study of hot gas in M87, observed by XMM-Newton. We choose two radial bins, 1'-3' and 8'-16' (8'-14' for EMOS; hereafter the central and the outer zones), where the temperature is almost constant, to carry out the detailed abundance measurements of O, Ne, Mg, Si, S, Ar, Ca, Fe and Ni using EPIC-PN (EPN) and -MOS (EMOS) data. First, we find that the element abundance pattern in the central compared to the outer zone in M87 is characterized by SN Ia enrichment of a high (roughly solar) ratio of Si-group elements (Si, S, Ar, Ca) to Fe, implying that Si burning in SN Ia is highly incomplete. In nucleosynthesis modeling this is associated with either a lower density of the deflagration-detonation transition and/or lower C/O and/or lower central ignition density and observationally detected as optically subluminous SNe Ia in early-type galaxies. Second, we find that SN Ia enrichment has a systematically lower ratio of the Si-group elements to Fe by 0.2 dex in the outer zone associated with the ICM of the Virgo cluster. We find that such a ratio and even lower values by another 0.1 dex are a characteristic of the ICM in many clusters using observed Si:S:Fe ratios as found with ASCA. Third, the Ni/Fe ratio in the central zone of M87 is 1.5+/-0.3 solar (meteoritic), while values around 3 times solar are reported for other clusters. In modeling of SN Ia, this implies a reduced influence of fast deflagration SN Ia models in the chemical enrichment of M87's ISM. Thus, to describe the SN Ia metal enrichment in clusters, both deflagration as well as delayed detonation scenarios are required, supporting a similar conclusion, derived from optical studies on SNe Ia. Abridged.Comment: 11 pages, A&A, in pres
    • 

    corecore