440 research outputs found

    Novel regulation of PLCĪ¶ activity via its XY-linker

    Get PDF
    The XY-linker region of somatic cell PLC (phospholipase)-Ī², -Ī³, -Ī“ and -Ļµ isoforms confers potent catalytic inhibition, suggesting a common auto-regulatory role. Surprisingly, the sperm PLCĪ¶ XY-linker does not mediate auto-inhibition. Unlike for somatic PLCs, the absence of the PLCĪ¶ XY-linker significantly diminishes both in vitro PIP2 (phosphatidylinositol 4,5-bisphosphate) hydrolysis and in vivo Ca2+-oscillation-inducing activity, revealing evidence for a novel PLCĪ¶ enzymatic mechanism

    Power system static and dynamic security studies for the 1st phase of Crete Island Interconnection

    Get PDF
    The island of Crete is currently served by an autonomous electrical system being fed by oil-fired (Heavy fuel or light Diesel oil) thermal power plants and renewables (wind and PVs). The peak load and annual electric energy consumption are approximately 600 MW and 3 TWh respectively; wind and photovoltaic parks contribute approximately 20% of the electricity needs of the island. Due to the expensive fuel used, the Cretan power system has very high electric energy generation cost compared to the Greek mainland. On the other side the limited size of the system poses severe limitations to the penetration of renewable energy sources, not allowing to further exploit the high wind and solar potential of the island. According to the Ten Year Network Development Plan (TYNDP) of the Greek TSO (Independent Power Transmission Operator S.A. IPTO S.A.), the interconnection of Crete to the mainland Transmission System of Greece will be realized through two links: A 150 kV HVAC link between the Peloponnese and the Crete (Phase I) and a HVDC link connecting the metropolitan area of Athens with Crete (Phase II). The total length of submarine and underground cable of the HVAC link will be approximately 174km; it is at the limits of the AC technology and the longest and deepest worldwide at 150 kV level. A number of studies have been conducted by a joint group of IPTO and Hellenic Electricity Distribution Network Operator (HEDNO) for the design of this interconnection. This paper presents briefly the power system static and dynamic studies conducted for the design of the AC link and its operation. Firstly, the paper presents the main results of the static security study regarding the calculation of the maximum power transfer capability of the link and the selection of the reactive power compensation scheme of the cable. Results from dynamic security analysis studies are also presented. The small-signal stability analysis concludes that a new (intra-area) electromechanical oscillation is introduced to the National System after the interconnection. The damping of the electromechanical oscillations is sufficient; however the operation of power system stabilizers at power plants located both at the mainland and at Crete power system can increase significantly the damping of important oscillation modes. Finally with respect to the risk of loss of synchronism after a significant disturbance in the system of Crete, such as a three-phase fault (ā€œtransient stabilityā€)- enough safety margin is estimated by means of Critical Clearing Time calculations

    Power system static and dynamic security studies for the 1st phase of Crete Island Interconnection

    Get PDF
    The island of Crete is currently served by an autonomous electrical system being fed by oil-fired (Heavy fuel or light Diesel oil) thermal power plants and renewables (wind and PVs). The peak load and annual electric energy consumption are approximately 600 MW and 3 TWh respectively; wind and photovoltaic parks contribute approximately 20% of the electricity needs of the island. Due to the expensive fuel used, the Cretan power system has very high electric energy generation cost compared to the Greek mainland. On the other side the limited size of the system poses severe limitations to the penetration of renewable energy sources, not allowing to further exploit the high wind and solar potential of the island. According to the Ten Year Network Development Plan (TYNDP) of the Greek TSO (Independent Power Transmission Operator S.A. IPTO S.A.), the interconnection of Crete to the mainland Transmission System of Greece will be realized through two links: A 150 kV HVAC link between the Peloponnese and the Crete (Phase I) and a HVDC link connecting the metropolitan area of Athens with Crete (Phase II). The total length of submarine and underground cable of the HVAC link will be approximately 174km; it is at the limits of the AC technology and the longest and deepest worldwide at 150 kV level. A number of studies have been conducted by a joint group of IPTO and Hellenic Electricity Distribution Network Operator (HEDNO) for the design of this interconnection. This paper presents briefly the power system static and dynamic studies conducted for the design of the AC link and its operation. Firstly, the paper presents the main results of the static security study regarding the calculation of the maximum power transfer capability of the link and the selection of the reactive power compensation scheme of the cable. Results from dynamic security analysis studies are also presented. The small-signal stability analysis concludes that a new (intra-area) electromechanical oscillation is introduced to the National System after the interconnection. The damping of the electromechanical oscillations is sufficient; however the operation of power system stabilizers at power plants located both at the mainland and at Crete power system can increase significantly the damping of important oscillation modes. Finally with respect to the risk of loss of synchronism after a significant disturbance in the system of Crete, such as a three-phase fault (ā€œtransient stabilityā€)- enough safety margin is estimated by means of Critical Clearing Time calculations

    Wear debris pseudotumor following total knee arthroplasty: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>In patients who have undergone a total joint replacement, any mass occurring in or adjacent to the joint needs thorough investigation and a wear debris-induced cyst should be suspected.</p> <p>Case presentation</p> <p>An 81-year-old man presented with a painful and enlarging mass at the popliteal fossa and calf of his right knee. He had had a total right knee replacement seven years previously. Plain radiographs showed narrowing of the medial compartment. Magnetic resonance imaging showed a cystic lesion at the postero-medial aspect of the knee joint mimicking popliteal cyst or soft tissue sarcoma. Fine needle aspiration was non-diagnostic. A core-needle biopsy showed metallosis. Intraoperative findings revealed massive metallosis related to extensive polyethylene wear, delamination and deformation. Revision knee and patella arthroplasty was carried out after a thorough debridement of the knee joint.</p> <p>Conclusion</p> <p>Long-term follow-up is critical for patients with total joint replacement for early detection of occult polyethylene wear and prosthesis loosening. In these cases, revision arthroplasty may provide a satisfactory knee function.</p

    Evolving towards a critical point: A possible electromagnetic way in which the critical regime is reached as the rupture approaches

    Get PDF
    International audienceIn analogy to the study of critical phase transitions in statistical physics, it has been argued recently that the fracture of heterogeneous materials could be viewed as a critical phenomenon, either at laboratory or at geophysical scales. If the picture of the development of the fracture is correct one may guess that the precursors may reveal the critical approach of the main-shock. When a heterogeneous material is stretched, its evolution towards breaking is characterized by the appearance of microcracks before the final break-up. Microcracks produce both acoustic and electromagnetic(EM) emission in the frequency range from VLF to VHF. The microcracks and the associated acoustic and EM activities constitute the so-called precursors of general fracture. These precursors are detectable not only at laboratory but also at geophysical scales. VLF and VHF acoustic and EM emissions have been reported resulting from volcanic and seismic activities in various geologically distinct regions of the world. In the present work we attempt to establish the hypothesis that the evolution of the Earth's crust towards the critical point takes place not only in a mechanical but also in an electromagnetic sense. In other words, we focus on the possible electromagnetic criticality, which is reached while the catastrophic rupture in the Earth's crust approaches. Our main tool is the monitoring of micro-fractures that occur before the final breakup, by recording their radio-electromagnetic emissions. We show that the spectral power law analysis of the electromagnetic precursors reveals distinguishing signatures of underlying critical dynamics, such as: (i) the emergence of memory effects; (ii) the decrease with time of the anti-persistence behaviour; (iii) the presence of persistence properties in the tail of the sequence of the precursors; and (iv) the acceleration of the precursory electro-magnetic energy release. Moreover, the statistical analysis of the amplitudes of the electromagnetic fluctuations reveals the breaking of the symmetry as the theory predicts. Finally, we try to answer the question: how universal the observed electromagnetic critical behaviour of the failing system is

    Multivariate statistical process control based on principal component analysis: implementation of framework in R

    Get PDF
    The interest in multivariate statistical process control (MSPC) has increased as the industrial processes have become more complex. This paper presents an industrial process involving a plastic part in which, due to the number of correlated variables, the inversion of the covariance matrix becomes impossible, and the classical MSPC cannot be used to identify physical aspects that explain the causes of variation or to increase the knowledge about the process behaviour. In order to solve this problem, a Multivariate Statistical Process Control based on Principal Component Analysis (MSPC-PCA) approach was used and an R code was developed to implement it according some commercial software used for this purpose, namely the ProMV (c) 2016 from ProSensus, Inc. (www.prosensus.ca). Based on used dataset, it was possible to illustrate the principles of MSPC-PCA. This work intends to illustrate the implementation of MSPC-PCA in R step by step, to help the user community of R to be able to perform it.FCT - FundaĆ§Ć£o para a CiĆŖncia e a Tecnologia(UID/CEC/00319/2013

    Microclimate monitoring in the Carcer Tullianum: temporal and spatial correlation and gradients evidenced by multivariate analysis; first campaign

    Get PDF
    Too often microclimate studies in the field of cultural heritage are published without any or scarce information on sampling design, sensors (type, number, position) and instrument validation. Lacking of this fundamental information does not allow an open discussion in the scientific community. This work aims to be an invitation for a different approach
    • ā€¦
    corecore