7 research outputs found

    Differential susceptibility to obesity between male, female and ovariectomized female mice

    Get PDF
    All authors are with the Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas, USABackground: The prevalence of obesity has increased dramatically. A direct comparison in the predisposition to obesity between males, premenopausal females, and postmenopausal females with various caloric intakes has not been made. To determine the effects of sex and ovarian hormones on the susceptibility to obesity, we conducted laboratory studies with mice. To eliminate confounders that can alter body weight gain, such as age and food consumption; we used mice with the same age and controlled the amount of calories they consumed. -- Methods: We determined sex-specific susceptibility to obesity between male, non-ovariectomized female, and ovariectomized female mice. To compare susceptibility to gaining body weight between males and females, animals from each sex were exposed to either a 30% calorie-restricted, low-fat (5% fat), or high-fat (35% fat) diet regimen. To establish the role of ovarian hormones in weight gain, the ovaries were surgically removed from additional female mice, and then were exposed to the diets described above. Percent body fat and percent lean mass in the mice were determined by dual energy x-ray absorptiometry (DEXA). -- Results: In all three diet categories, male mice had a greater propensity of gaining body weight than female mice. However, ovariectomy eliminated the protection of female mice to gaining weight; in fact, ovariectomized female mice mimicked male mice in their susceptibility to weight gain. In summary, results show that male mice are more likely to become obese than female mice and that the protection against obesity in female mice is eliminated by ovariectomy. -- Conclusion: Understanding metabolic differences between males and females may allow the discovery of better preventive and treatment strategies for diseases associated with body weight such as cancer and cardiovascular disease.Nutritional [email protected]

    Adipocytes Promote B16BL6 Melanoma Cell Invasion and the Epithelial-to-Mesenchymal Transition

    No full text
    Metastatic melanoma is one of the most deadly and evasive types of cancer. On average, cancer patients with metastatic melanoma survive only 6–9 months after diagnosis. Epidemiological and animal studies suggest that obesity increases the metastatic ability of malignant melanoma, though the mechanism is not known. In the present studies, we assessed the ability of 3T3L1 adipocytes to modulate B16BL6 melanoma cell invasion and the Epithelial-to-Mesenchymal Transition (EMT). For this purpose, we induced the differentiation of 3T3L1 fibroblasts to adipocytes. Then, we collected the cell culture media from both fibroblasts and adipocytes and determined their effect on the invasive ability and EMT gene expression of B16BL6 melanoma cells. Results show that adipocyte media increased that ability of B16BL6 cells to invade. The higher invasive ability of B16BL6 melanoma cells was associated with increased expression of EMT genes such as Snai1, MMP9, Twist, and Vimentin. Additionally, the expression of the cell-to-cell adhesion protein E-cadherin and the metastasis suppressor gene Kiss1 were down-regulated in these B16BL6 cells. Also, adipocytes had high levels of the pro-inflammatory cytokine Interleukin 6 (IL-6). Treatment of B16BL6 cells with IL-6 elicited similar effects as the adipocyte media; IL-6 promoted the invasive ability of B16BL6 melanoma cells, increased the expression of Snai1, and decreased Kiss1 expression. IL-6 neutralization, however, did not have a visible effect on adipocyte media-induced invasion and snai1 staining. In summary, adipocytes may increase the invasive ability of B16BL6 melanoma cells by promoting EMT and decreasing the expression of genes such as E-cadherin and Kiss1
    corecore