55 research outputs found

    Estimate of the free energy difference in mechanical systems from work fluctuations: experiments and models

    Get PDF
    The work fluctuations of an oscillator in contact with a heat reservoir and driven out of equilibrium by an external force are studied experimentally. The oscillator dynamics is modeled by a Langevin equation. We find both experimentally and theoretically that, if the driving force does not change the equilibrium properties of the thermal fluctuations of this mechanical system, the free energy difference ΔF\Delta F between two equilibrium states can be exactly computed using the Jarzynski equality (JE) and the Crooks relation (CR) \cite{jarzynski1, crooks1, jarzynski2}, independently of the time scale and amplitude of the driving force. The applicability limits for the JE and CR at very large driving forces are discussed. Finally, when the work fluctuations are Gaussian, we propose an alternative empirical method to compute ΔF\Delta F which can be safely applied, even in cases where the JE and CR might not hold. The results of this paper are useful to compute ΔF\Delta F in complex systems such as the biological ones.Comment: submitted to Journal of Statistical Mechanics: Theory and experimen

    Thermal noise properties of two aging materials

    Full text link
    In this lecture we review several aspects of the thermal noise properties in two aging materials: a polymer and a colloidal glass. The measurements have been performed after a quench for the polymer and during the transition from a fluid-like to a solid-like state for the gel. Two kind of noise has been measured: the electrical noise and the mechanical noise. For both materials we have observed that the electric noise is characterized by a strong intermittency, which induces a large violation of the Fluctuation Dissipation Theorem (FDT) during the aging time, and may persist for several hours at low frequency. The statistics of these intermittent signals and their dependance on the quench speed for the polymer or on sample concentration for the gel are studied. The results are in a qualitative agreement with recent models of aging, that predict an intermittent dynamics. For the mechanical noise the results are unclear. In the polymer the mechanical thermal noise is still intermittent whereas for the gel the violation of FDT, if it exists, is extremely small.Comment: to be published in the Proceedings of the XIX Sitges Conference on ''Jammming, Yielding and Irreversible Deformation in Condensed Matter'', M.-C.Miguel and M. Rubi eds.,Springer Verlag, Berli

    Coherent methods in the X-ray sciences

    Full text link
    X-ray sources are developing rapidly and their coherent output is growing extremely rapidly. The increased coherent flux from modern X-ray sources is being matched with an associated rapid development in experimental methods. This article reviews the literature describing the ideas that utilise the increased brilliance from modern X-ray sources. It explores how ideas in coherent X-ray science are leading to developments in other areas, and vice versa. The article describes measurements of coherence properties and uses this discussion as a base from which to describe partially-coherent diffraction and X-ray phase contrast imaging, with its applications in materials science, engineering and medicine. Coherent diffraction imaging methods are reviewed along with associated experiments in materials science. Proposals for experiments to be performed with the new X-ray free-electron-lasers are briefly discussed. The literature on X-ray photon correlation spectroscopy is described and the features it has in common with other coherent X-ray methods are identified. Many of the ideas used in the coherent X-ray literature have their origins in the optical and electron communities and these connections are explored. A review of the areas in which ideas from coherent X-ray methods are contributing to methods for the neutron, electron and optical communities is presented.Comment: A review articel accepted by Advances in Physics. 158 pages, 29 figures, 3 table

    Nanoencapsulated capsaicin changes migration behavior and morphology of madin darby canine kidney cell monolayers

    Get PDF
    We have developed a drug delivery nanosystem based on chitosan and capsaicin. Both substances have a wide range of biological activities. We investigated the nanosystem’s influence on migration and morphology of Madin Darby canine kidney (MDCK-C7) epithelial cells in comparison to the capsaicin-free nanoformulation, free capsaicin, and control cells. For minimally-invasive quantification of cell migration, we applied label-free digital holographic microscopy (DHM) and single-cell tracking. Moreover, quantitative DHM phase images were used as novel stain-free assay to quantify the temporal course of global cellular morphology changes in confluent cell layers. Cytoskeleton alterations and tight junction protein redistributions were complementary analyzed by fluorescence microscopy. Calcium influx measurements were conducted to characterize the influence of the nanoformulations and capsaicin on ion channel activities. We found that both, capsaicin-loaded and unloaded chitosan nanocapsules, and also free capsaicin, have a significant impact on directed cell migration and cellular motility. Increase of velocity and directionality of cell migration correlates with changes in the cell layer surface roughness, tight junction integrity and cytoskeleton alterations. Calcium influx into cells occurred only after nanoformulation treatment but not upon addition of free capsaicin. Our results pave the way for further studies on the biological significance of these findings and potential biomedical applications, e.g. as drug and gene carriers

    Light Microscope Alignment Methods

    No full text
    • …
    corecore