2,948 research outputs found

    Microglia form satellites with different neuronal subtypes in the adult murine central nervous system

    Get PDF
    Microglia are the innate immune cells of the central nervous system (CNS). In the adult uncompromised CNS, they have a highly ramified morphology and continuously extend and retract their processes. A subpopulation of microglial cells forms close soma-to-soma contacts with neurons and have been termed satellite microglia, yet the role of such interaction is largely unknown. Here, we analyzed the distribution of satellite microglia in different areas of the CNS of adult male mice applying transgenic- and immunolabeling of neuronal subtypes and microglia followed by three-dimensional imaging analysis. We quantified satellite microglia associated with GABAergic and glutamatergic neurons in the somatosensory cortex, striatum, and thalamus; with dopaminergic and serotonergic neurons in the basal forebrain and raphe nucleus, respectively; and with cerebellar Purkinje cell neurons. Satellite microglia in the retina were assessed qualitatively. Microglia form satellites with all neuronal subtypes studied, whereas a preference for a specific neuron subtype was not found. The occurrence and frequency of satellite microglia is determined by the histo-architectural organization of the brain area and the densities of neuronal somata therein

    Eight-band calculations of strained InAs/GaAs quantum dots compared with one, four, and six-band approximations

    Full text link
    The electronic structure of pyramidal shaped InAs/GaAs quantum dots is calculated using an eight-band strain dependent k⋅p\bf k\cdot p Hamiltonian. The influence of strain on band energies and the conduction-band effective mass are examined. Single particle bound-state energies and exciton binding energies are computed as functions of island size. The eight-band results are compared with those for one, four and six bands, and with results from a one-band approximation in which m(r) is determined by the local value of the strain. The eight-band model predicts a lower ground state energy and a larger number of excited states than the other approximations.Comment: 8 pages, 7 figures, revtex, eps

    On a Covariant Determination of Mass Scales in Warped Backgrounds

    Get PDF
    We propose a method of determining masses in brane scenarios which is independent of coordinate transformations. We apply our method to the scenario of Randall and Sundrum (RS) with two branes, which provides a solution to the hierarchy problem. The core of our proposal is the use of covariant equations and expressing all coordinate quantities in terms of invariant distances. In the RS model we find that massive brane fields propagate proper distances inversely proportional to masses that are not exponentially suppressed. The hierarchy between the gravitational and weak interactions is nevertheless preserved on the visible brane due to suppression of gravitational interactions on that brane. The towers of Kaluza-Klein states for bulk fields are observed to have different spacings on different branes when all masses are measured in units of the fundamental scale. Ratios of masses on each brane are the same in our covariant and the standard interpretations. Since masses of brane fields are not exponentiated, the fundamental scale of higher-dimensional gravity must be of the order of the weak scale.Comment: 14 page

    Alternative splicing of the n-terminal cytosolic and transmembrane domains of P2X7 controls gating of the ion channel by ADP-ribosylation

    Get PDF
    P2X7 is a homotrimeric ion channel with two transmembrane domains and a large extracellular ATP-binding domain. It plays a key role in the response of immune cells to danger signals released from cells at sites of inflammation. Gating of murine P2X7 can be induced by the soluble ligand ATP, as well as by NAD(+)-dependent ADP-ribosylation of arginine 125, a posttranslational protein modification catalyzed by the toxin-related ecto-enzymes ART2.1 and ART2.2. R125 is located at the edge of the ligand-binding crevice. Recently, an alternative splice variant of P2X7, designated P2X7(k), was discovered that differs from the previously described variant P2X7(a) in the N-terminal 42 amino acid residues composing the first cytosolic domain and most of the Tm1 domain. Here we compare the two splice variants of murine P2X7 with respect to their sensitivities to gating by ADP-ribosylation in transfected HEK cells. Our results show that the P2X7(k) variant is sensitive to activation by ADP-ribosylation whereas the P2X7(a) variant is insensitive, despite higher cell surface expression levels. Interestingly, a single point mutation (R276K) renders the P2X7(a) variant sensitive to activation by ADP-ribosylation. Residue 276 is located at the interface of neighboring subunits approximately halfway between the ADP-ribosylation site and the transmembrane domains. Moreover, we show that naive and regulatory T cells preferentially express the more sensitive P2X7(k) variant, while macrophages preferentially express the P2X7(a) variant. Our results indicate that differential splicing of alternative exons encoding the N-terminal cytosolic and transmembrane domains of P2X7 control the sensitivity of different immune cells to extracellular NAD(+) and ATP

    Nanoscale magnetic imaging using circularly polarized high-harmonic radiation

    Get PDF
    This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and phase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the exceptional coherence of high harmonics, this approach will facilitate quantitative, element-specific, and spatially resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism

    Projections of Atmospheric Nitrogen Deposition to the Chesapeake Bay Watershed

    Get PDF
    Atmospheric deposition is among the largest pathways of nitrogen loading to the Chesapeake Bay Watershed (CBW). The interplay between future climate and emission changes in and around the CBW will likely shift the future nutrient deposition abundance and chemical regime (e.g., oxidized vs. reduced nitrogen). In this work, a Representative Concentration Pathway from the Community Earth System Model is dynamically downscaled using a recently updated Weather Research and Forecasting model that subsequently drives the Community Multiscale Air Quality model coupled to the agroeconomic Environmental Policy Integrated Climate model. The relative impacts of emission and climate changes on atmospheric nutrient deposition are explored for a recent historical period and a period centered on 2050. The projected regional emissions in Community Multiscale Air Quality reflect current federal and state regulations, which use baseline and projected emission years 2011 and 2040, respectively. The historical simulations of 2-m temperature (T2) and precipitation (PRECIP) have cool and dry biases, and temperature and PRECIP are projected to both increase. Ammonium wet deposition agrees well with observations, but nitrate wet deposition is underpredicted. Climate and deposition changes increase simulated future ammonium fertilizer application. In the CBW by 2050, these changes (along with widespread decreases in anthropogenic nitrogen oxide and sulfur oxide emissions, and relatively constant ammonia emissions) decrease total nitrogen deposition by 21%, decrease annual average oxidized nitrogen deposition by 44%, and increase reduced nitrogen deposition by 10%. These results emphasize the importance of decreased anthropogenic emissions on the control of future nitrogen loading to the Chesapeake Bay in a changing climate

    Characterization of the Photo-emf Response for Laser-Based Ultrasonic Sensing Under Simulated Industrial Conditions

    Get PDF
    There is a need in myriad manufacturing environments to nondestructively evaluate components and to control processes in real-time. Laser-based ultrasound [1,2], LBU, has the potential to be a robust, reconfigurable, noncontact diagnostic for many industrial applications. A simple and inexpensive semiconductor sensor based on the nonsteady-state photo-induced-electromotive force (photo-emf) effect [3,4], has been demonstrated [5] to be functional under a variety of manufacturing conditions and in probing various materials, including metals, semiconductors, and organics. This device has the potential to remotely sense ultrasound via speckle motion or coherent detection over a reasonable field-of-view, with good bandwidth and detection sensitivity. In addition, the detector can, at the same time, compensate for otherwise deleterious static and dynamic environmental distortions in real-time, including speckle, beam wander, poor-quality optics, and propagation distortions over free-space paths and through multi-mode optical fibers. Such inspection tools can improve the efficiency, yield and performance of various manufacturing processes, including bonds, surface treatments, case hardening, composites, metallurgy, microcrack detection, adhesion, remote temperature and thickness measurements. By performing the inspection on-line and in real-time, the possibility exists for closed-loop, in-process control. This can lead to reduced cost, labor, scrap, and machine downtime in today’s highly competitive markets

    Safety, tolerability, and impact on allergic inflammation of autologous E.coli autovaccine in the treatment of house dust mite asthma - a prospective open clinical trial

    Get PDF
    Background: Asthma is increasing worldwide and results from a complex immunological interaction between genetic susceptibility and environmental factors. Autovaccination with E. coli induces a strong TH-1 immune response, thus offering an option for the treatment of allergic diseases. Methods: Prospective open trial on safety, tolerability, and impact on allergic inflammation of an autologous E.coli autovaccine in intermittent or mild persistent house dust mite asthma. Determination of exhaled nitric monoxide (eNO) before and after bronchial mite challenge initially and after nine months of autovaccination. Results: Median eNO increase after autovaccination was significantly smaller (from 27.3 to 33.8 ppb; p=0.334) compared to initial values (from 32.6 to 42.2 ppb; p=0.046) (p=0.034). In nine subjects and a total of 306 injections, we observed 101 episodes of local erythema (33.3%; median of maximal diameter 2.5 cm), 95 episodes of local swelling (31.1%; median of maximal diameter 3 cm), and 27 episodes of local pain (8.8%). Four subjects reported itching at the injection site with a total of 30 episodes (9.8%). We observed no serious adverse events. All organ functions (inclusive electrocardiogramm) and laboratory testing of the blood (clinical chemistry, hematology) and the urine (screening test, B-microglobuline) were within normal limits. Vital signs undulated within the physiological variability. Conclusion: The administration of autologous autovacine for the treatment of house dust mite asthma resulted in a reduction of the eNO increase upon bronchial mite challenge. In nine subjects and 306 injections, only a few mild local reactions and no systemic severe adverse events were observed. EudraCT Nr. 2005-005534-12 ClinicalTrials.gov ID NCT0067720
    • …
    corecore