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Abstract Atmospheric deposition is among the largest pathways of nitrogen loading to the Chesapeake
Bay Watershed (CBW). The interplay between future climate and emission changes in and around the CBW
will likely shift the future nutrient deposition abundance and chemical regime (e.g., oxidized vs. reduced
nitrogen). In this work, a Representative Concentration Pathway from the Community Earth SystemModel
is dynamically downscaled using a recently updated Weather Research and Forecasting model that
subsequently drives the Community Multiscale Air Quality model coupled to the agroeconomic
Environmental Policy Integrated Climate model. The relative impacts of emission and climate changes on
atmospheric nutrient deposition are explored for a recent historical period and a period centered on 2050.
The projected regional emissions in Community Multiscale Air Quality reflect current federal and state
regulations, which use baseline and projected emission years 2011 and 2040, respectively. The historical
simulations of 2‐m temperature (T2) and precipitation (PRECIP) have cool and dry biases, and temperature
and PRECIP are projected to both increase. Ammonium wet deposition agrees well with observations,
but nitrate wet deposition is underpredicted. Climate and deposition changes increase simulated future
ammonium fertilizer application. In the CBW by 2050, these changes (along with widespread decreases in
anthropogenic nitrogen oxide and sulfur oxide emissions, and relatively constant ammonia emissions)
decrease total nitrogen deposition by 21%, decrease annual average oxidized nitrogen deposition by 44%, and
increase reduced nitrogen deposition by 10%. These results emphasize the importance of decreased
anthropogenic emissions on the control of future nitrogen loading to the Chesapeake Bay in a
changing climate.

Plain Language Summary In this study a global climate scenario is used to drive a regional‐scale
weather and air quality model to investigate the potential impacts of future climate and emission changes on
atmospheric nitrogen loading to the Chesapeake Bay Watershed (CBW). While different scenarios are
possible, here we delve into a specific climate projection that represents a future pathway for stabilization of
radiative forcing by the year 2050 and use projected emissions (from human activity) that are based on
historical and proposed regulations and controls from the U.S. Environmental Protection Agency. The
combined climate and emission changes lead to decreases in the atmospheric nitrogen loading to the
Chesapeake Bay Watershed by the year 2050, while the effects of climate alone lead to a small increase in
atmospheric nitrogen loading. The results demonstrate the importance of emission reductions on nitrogen
loading to the Chesapeake Bay, in the face of climate change.

1. Introduction

The CBW is home to over 18 million people, and it provides over $100 billion in total economic benefits
annually (Chesapeake Bay Foundation, 2014). The growth in industry, population, and agriculture in the
CBW has degraded water quality and living resources in the Chesapeake Bay (EPA, 2010). The decline in liv-
ing resources is largely attributed to hypoxia from excessive nutrient loading (Linker, Batiuk, et al., 2013). In
2010, the Chesapeake Bay Total Maximum Daily Load was established to reduce the nutrient loading to the
CBW and improve the living and recreational uses of the bay (EPA, 2010). Atmospheric deposition of nitro-
gen (N) through scavenging by PRECIP (i.e., wet deposition) or the loss of nitrogen‐containing gases and
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particles to the surface (i.e., dry deposition (DD)) is among the largest sources of N to the CBW (Eschleman&
Sabo, 2016; Linker, Dennis, et al., 2013). Reductions in total atmospheric N deposition in the United States
through regulations promulgated under the Clean Air Act, and recent shifts from coal to natural gas to fuel
electrical generation have been well documented (De Gouw et al., 2014). However, the recent changes in
emissions have not been uniformed for all N‐containing atmospheric pollutants. Regulations and shifts in
energy production have decreased oxidized N emissions (NOx) from combustion sources, while emissions
of reduced N (NHx = NH3 + ammonium [NH4

+]), primarily from agricultural and livestock sources, have
remained relatively constant (Li, Schichtel, et al., 2016). This shift in emissions alters the atmospheric parti-
culate matter formation that cascades through the transport and fate of atmospheric N.

The climate system is warming, and many of the observed changes since the 1950s are unprecedented over
decades to millennia (IPCC, 2014). There is also medium to high confidence that continued emission of
greenhouse gases (GHGs) will enhance warming, resulting in long‐lasting changes in all components of
the climate system (IPCC, 2014). Hence the climate trends have not been static in and around the
Chesapeake Bay (Chesapeake Bay Foundation, 2007), and the associated changes in temperature,
PRECIP, and sea level can act as stressors on the flora and fauna that help to maintain good water quality
in the CBWwhile compromising environmental integrity. Hypoxia in coastal systems is sensitive to changes
in patterns of temperature, PRECIP delivery, and wind‐driven mixing as well as nutrient loading (Li, Lee,
et al., 2016).Wind direction and speed, cloud cover, and sea surface temperature can also influence the devel-
opment of hypoxia (Breitburg et al., 2018; Scully, 2010), which can further influence the fate and transport of
atmospheric pollutants. To date, the individual and combined impacts of climate and emissions changes on
the N loading of NHx and NOx to the CBW have not been well assessed.

This study focuses on N emissions in the Chesapeake Bay's airshed, the deposition of N to the CBW, and
ways in which the loading of N could change in response to emission changes and potential climate and
agroecosystem changes. Emitted N species, including both NOx emissions and NH3 emissions, are examined
in detail as they relate to deposition. NOx emissions have decreased in the United States nationally by nearly
41% from 1990 to 2010 (https://www.epa.gov/air‐emissions‐inventories/air‐pollutant‐emissions‐trends‐
data); are dominated by the onroad, nonroad, and nonpoint (e.g., ship, rail, and aircraft) sources in the
2011 National Emissions Inventory (NEI); and are projected to further decline due to the increased fuel effi-
ciency and tighter standards that are proposed to continue in the coming decades (EPA, 2016a, 2016b).
Meanwhile, NH3 emissions are relatively unregulated and have increased by 11% from 1990 to 2010
(Li, Schichtel, et al., 2016). There is greater uncertainty in the characterization of agricultural sector NH3

emissions in the 2011NEI platform compared to NOx sources, due to fewer in situ observations and emissions
monitoring data than exist for NOx (Nowak et al., 2012; Paulot et al., 2014; Walker et al., 2012; Zhu et al.,
2013). Here the relative impacts of climate and emissions trends on the loading of N to the CBW are assessed
with a focus on the projected changes to total N deposition, composed primarily of NHx and NOx to these
loads. Text S1 in the Supplementary Information provides a list of commonly used acronyms and abbrevia-
tions found in this section and throughout the remainder of the paper.

2. Model Details and Design
2.1. Model Setup

To probe the impacts of changing climate and emissions on atmospheric N deposition from a global to regio-
nal scale, we use data from the Community Earth SystemModel (CESM) Version 1.0 over a global domain at
horizontal resolution of 0.9° × 1.25°. For this study the CESM is driven by a Representative Concentration
Pathway (RCP) scenario (van Vuuren et al., 2011) that assumes stabilized anthropogenic radiative forcing
at 4.5 W/m2 (RCP4.5) by the year 2100 (Thomson et al., 2011). Global climate output from CESM is not suffi-
cient to support the regional air quality and deposition analyses in this work, and thus the output is dynami-
cally downscaled using the Weather Research and Forecasting (WRF) model Version 3.8.1 (Powers et al.,
2017; Skamarock & Klemp, 2008). WRF is then run continuously (no reinitialization) for historical (HIST:
1995–2004) and future (FUT: 2045–2054) decadal periods over a domain centered on the contiguous
United States (CONUS) at a horizontal grid spacing of 36 km with 35 vertical levels from the surface to 50
hPa (see Figure S1 for the domain map and configuration details used in this study). The WRF simulations
use higher‐resolution topography, land/water interfaces, land use/land cover data, and robust physical
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parameterizations to project changes to surface, atmospheric, and radiation fields. Additional details on the
downscaling methodology and analysis are provided elsewhere (Nolte et al., 2018; Spero et al., 2016). The
downscaled WRF fields are then processed using the Meteorology‐Chemistry Interface Processor Version
4.3 (Otte & Pleim, 2010) for input into the Community Multiscale Air Quality (CMAQ) model (Byun &
Schere, 2006) Version 5.2 (EPA, 2017) to simulate time‐varying emissions, dynamic air‐surface exchange
of trace gases and aerosols, gas‐phase chemistry, secondary aerosol formation, transport, and deposition
for the HIST and FUT periods.

2.2. Model Configuration and Inputs
2.2.1. Configuration
A modified WRFv3.8.1‐CMAQv5.2 system (hereafter referred to as WRF‐CMAQ) is used, which has an
improved linkage between the WRF/Noah land surface model and DD processes modeled by CMAQ
(Campbell et al., 2019). The physical/chemical model configuration is the same here as in Campbell et al.
(2019), where the CMAQ configuration includes the Carbon Bond 2005 gas phase mechanism with updates
for toluene and chlorine chemistry (CB05TUCL; Sarwar et al., 2011) and the AERO6 aerosol module with
semivolatile primary and secondary organic carbon (Appel et al., 2013; Nolte et al., 2015; Simon &
Bhave, 2012).

The model inputs in this study differs from Campbell et al. (2019) in the nudging, land use data, meteorolo-
gical and chemical initial and boundary conditions, anthropogenic emissions, dynamic greenhouse gas
(GHG) mixing ratios in the downscaled WRF simulations, and agroecosystem inputs for the bidirectional
ammonia (NH3) flux model (BIDI‐NH3) in CMAQ. Here the 24‐category U.S. Geological Survey land
use/land cover classification system is used in WRF, which was augmented so that lakes are distinguished
by an extra category as in Spero et al. (2016).
2.2.2. Downscaling and Boundary Conditions
WRF is used to dynamically downscale CESM, and it includes an updated treatment of inland water bodies
following Spero et al. (2016). In this case, WRF also uses spectral nudging above the PBL of wavelengths
>1,500 km from CESM. The chemical initial and boundary conditions for both CMAQ simulation periods
originate from a simulation of 2011 using the GEOS‐Chem global chemical transport model (Bey et al.,
2001; Henderson et al., 2014; Lam & Fu, 2009), which is the same as in Nolte et al. (2018). The general
approaches used for similar downscaling withWRF and CMAQ have been well documented; however, there
are some downscaling nuances that differ across applications (e.g., Gao et al., 2013; Nolte et al., 2008; Nolte
et al., 2018; Otte et al., 2012; Weaver et al., 2009).

To improve consistency between CESM and WRF, annual GHG values from the RCP4.5 scenario (IPCC,
2014) are used in the WRF radiation module. This method ensures that carbon dioxide (CO2), nitrous oxide
(N2O), methane (CH4), and chlorofluorocarbons 11 (CFC11) and 12 (CFC12) can evolve in both the HIST
and FUT period. Further, the static background CO2 and CH4 mixing ratios were modified in CMAQ to be
consistent with WRF. The HIST and FUT constant CO2 (CH4) values used in CMAQ are 368 ppm (1.743
ppm) and 485 ppm (1.833 ppm), respectively. This enables WRF‐CMAQ to respond to both direct (e.g.,
CMAQ CH4 oxidation pathways) and indirect (e.g., WRF temperature and rates of reactions) impacts from
changing GHGs under HIST and projected FUT conditions, which better align with the CESM simulation.
2.2.3. Historical and Future Emissions
The HIST period anthropogenic emissions are from the U.S. Environmental Protection Agency (EPA)
2011v6.2 modeling platform (EPA, 2015) and are based on the 2011 NEI Version 2 (hereafter referred to
as 2011NEI; EPA, 2016a; http://www.epa.gov/ttn/chief/net/2011inventory.html#inventorydoc). The major
2011NEI categories (sectors) incorporated in this work include (1) point (Electric Generating Units
(EGUs), non‐EGUs, and point oil and gas), (2) nonpoint (agricultural, agricultural fires, fugitive dust, rail,
commercial marine, nonpoint oil and gas, and residential wood combustion), (3) nonroad, (4) onroad,
(5) point source fires, and (6) other sources in Canada and Mexico (other fugitive dust, point, nonpoint
and nonroad, and onroad). The primary emissions modeling tool used to create the air quality model‐ready
emissions for CMAQwas the SparseMatrix Operator Kernel Emissions program (http://www.smoke‐model.
org), Version 3.6.5, which includes a number of different integrated model programs within (e.g., Sparse
Matrix Operator Kernel Emissions‐Motor Vehicle Emissions Simulator (MOVES) for the onroad sector),
while incorporating gridded meteorological data from WRF Version 3.4 model simulations that are
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consistent with the Air Quality Modeling Technical Support Document
used in the rulemaking (EPA, 2016b). Details regarding development of
2011NEI model‐ready emissions for each category and applicable subsec-
tors are well described in EPA (2016a), including detailed descriptions of
certain key differences between a relatively updated 2011v6.2 modeling
platform compared to the base 2011NEI (also summarized here in the
Supporting Information).

Particularly relevant to this work, the agricultural NH3 sector emissions
dominate (>80%) the total anthropogenic NH3 emission load (Reis et al.,
2009), while past shifts in decreasing NOx and increasing NH3 emissions
have led to an increased importance of atmospheric NHx deposition in
the United States (Li, Schichtel, et al., 2016). Thus, we briefly summarize
the details for the agriculture NH3 sector developed in the 2011NEI, as
the details are important for interpreting the CONUS NH3 emission
changes shown below, and their impacts on future N changes in the

CBW. The 2011NEI agriculture NH3 sector includes both livestock NH3 sources and all the NH3 emissions
from agricultural fertilization in the 2011NEI. Livestock sources include beef cattle, poultry production
and waste emissions, dairy cattle, cattle and calves waste emissions, swine production, horses and ponies
waste emissions, sheep and lambs waste emissions, and goats waste emissions. The agriculture NH3 sector
does not include all the livestock NH3 emissions, as a small amount of NH3 emissions is included within
the livestock feedlots source in the non‐EGU point sector for California and Wisconsin (EPA, 2016a). As
an agroecosystem model (described below) is coupled to the CMAQ BIDI‐NH3 model in this work (BIDI‐
NH3 exchange estimates emissions from fertilizer application in‐line), the NH3 emissions from agriculture
fertilizer applications to crops are removed from the emissions inventory to avoid double counting of this
source (Bash et al., 2013).

The FUT period emissions are part of a joint rulemaking effort under the Clean Air Act and the Energy
Independence and Security Act of 2007 and are based on federal and state regulations and measures for
the year 2040 reference (2040ref) case, which had been promulgated by August 2015 (EPA, 2016a). They
represent the impact of current “on‐the‐books” regulations without implementation of the Heavy‐Duty
Vehicle Greenhouse Gas Phase 2 rule (EPA, 2016a). The future period emissions for the 2040ref case are cre-
ated by using different projection methods (e.g., running models or using best estimates) that are specific to
the sources in the various sectors, while some sectors/sources remain the same in both the historical and
future. Hence, there is a significant amount of detail within each source/sector projection, which may be
found in section 4 of EPA (2016a) and is not repeated here; however, important to the discussion below
and in later sections, we briefly summarize the major aspect of each sector's projection methods (if applic-
able) and the list of criteria air pollutants (CAPs) (NH3, carbon monoxide [CO], NOx, sulfur dioxide [SO2],
volatile organic compounds [VOC], and particulate matter with an aerodynamic diameter <10 μm [PM10]
and <2.5 μm [PM2.5]) impacted in Table S1. We note that some emission sectors/sources in the 2040ref case
are not projected to the year 2040 and are representative of earlier periods (Table S1). Biogenic emissions are
not included in either the 2011NEI or 2040ref emission files. Rather they are calculated in CMAQ using the
Biogenic Emissions Inventory System Version 3.6 and are dependent on the climate/meteorology (e.g., tem-
perature and insolation) of the period. Thus, the pertinent biogenic VOC species are projected in the FUT
periods, as these CMAQ runs incorporate the future years' meteorological conditions.

Table 1 summarizes the total emissions differences between the 2011NEI and 2040ref case for the CAPs
(based on data in EPA, 2016a) and shows that there are CONUS decreases in NOx (51%), CO (28%), SO2

(66%), and anthropogenic VOC (AVOC) (14%) emissions in the 2040ref projections compared to 2011NEI.
The decreases in NOx, CO, and AVOC are driven by nationally modeled onroad and nonroad sector rules,
which included more stringent vehicle emissions and fuel standards (e.g., Tier 3 and Tier 4 Vehicle
Emissions and Fuel Standards Program) in the future. The large decreases in SO2 2040ref emissions in the
United States are strongly driven by future state rules, consent decrees, and announced shutdowns of point
EGUs that are modeled to future years (Table S1) (EPA, 2016a). The SO2 emission decreases are also strongly
impacted by the implementation of several national regulations, including those aimed at reducing both

Table 1
National CAPs emissions summary data values based on section 5, Tables
5‐1 and 5‐2 in EPA (2016a)

CONUS emission totals (Mt/yr)

NOx NH3 CO SO2 AVOC PM10 PM2.5

2011NEI 14.21 4.18 71.43 6.39 17.31 11.26 4.59
2040ref 6.96 4.26 51.30 2.19 14.88 12.64 4.47
% change −51.07 1.97 −28.17 −65.77 −14.08 12.23 −2.51

Non‐CONUS emission totals (Mt/yr)
2011NEI 2.78 0.53 10.53 1.35 2.07 1.23 0.42
2040ref 2.64 0.55 9.32 1.11 2.13 1.24 0.43
% change −5.07 3.10 −11.44 −17.79 3.04 1.31 1.76

Note. The relative (%) change is defined as [(2040ref/2011NEI)−1] ×
100%, and the text is colored red for increases and blue for decreases.
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pollutants and GHGs in the future. The decreases in NOx and CO in the non‐CONUS regions are dominated
by onroad emission decreases in Mexico, while the decreases in SO2 in the non‐CONUS are driven by point
EGUs in Mexico, offshore, and commercial marine vessels. The larger increases in PM10 emissions in
CONUS (12%) are strongly driven by increases in fugitive dust from Annual Energy Outlook‐based
Vehicle Miles Travelled (VMT) growth for paved and unpaved roads. While there are also increases in
PM2.5 from fugitive dust, the larger decreases in emissions from onroad and nonroad sectors lead to a slight
CONUS average decrease for PM2.5 (3%).

NH3 emissions are relatively unregulated compared to the other CAPs above, and there are small increases
across the CONUS (2%) and non‐CONUS regions (3%) (Table 1). The increases in NH3 emissions are driven
by agricultural livestock emissions growth from the year 2011 to 2030 (Table S1), and there is no projection of
future NH3 from fertilizer application in the 2040ref emissions for CONUS. The changes in NH3 fertilizer
emissions in CONUS are driven by the coupled Environmental Policy Integrated Climate (EPIC) and
CMAQ BIDI‐NH3 exchange model framework. Figure 1 shows a spatial comparison of NOx and NH3

2011NEI emissions used in CMAQ, as well as their absolute and relative changes (2040ref – 2011NEI) in
the Chesapeake Bay Airshed (CBA). Figure S2 also shows domain‐wide absolute spatial emission difference
plots for NOx, NH3, and the other CAPs, while Figure S3 shows the NOx and NH3 emission changes in the
CBW for comparison.

There are widespread decreases in NOx emissions across CONUS, especially in the eastern United States and
in the CBA. Maximum decreases are in urban regions that experience a significant decrease in future onroad
NOx emissions. There are also widespread increases in NH3 emissions across the CONUS due to increased

agricultural NH3 emissions, while the decreases in parts of the western United States including California
are due to decreases in large onroad emission sources. The larger relative change in NOx and NH3 emissions
off the East andWest Coast of CONUS is due to commercial marine vehicle (i.e., ship) emission changes that
are large relative to small emission magnitudes in these regions. The average relative changes in NOx and
NH3 emissions in the CBA (CBW) are about −55% (−60%) and +7% (−0.4%), respectively. There are also
widespread decreases in CO, SO2, and AVOC emissions, with some localized increases in SO2 and AVOC
emissions, as well as widespread increases in PM10 and PM2.5 emissions (except in a few states including
California) across the eastern United States (Figure S2) and the CBA (Figure 1).

It is worth noting that the 2011NEI NH3 emissions used in these simulations are estimated using the same

methods as they are in the 2014NEI, while the NOx emissions in the 2014NEI are 13% lower than the
2011NEI, as shown in Table 2.6 in the 2014v2 NEI Technical Support Document (EPA, 2018). The bulk of
the NOx reduction in the 2014NEI is due to mobile sources and would certainly have an impact in the pro-

jected NOx deposition to the bay, as would any potential repeals of the NOx rules set forth in the EPA
(2016a) final rule. In this study, WRF‐CMAQ is linked to agricultural cropping management and soil biogeo-
chemical processes in the agroecosystem Environmental Policy Integrated Climate (EPIC) model (Cooter
et al., 2012) to improve simulated changes to N deposition over the CBW. The EPIC model uses weather‐
and climate‐dependent soil conditions to calculate fertilizer application timing, rate, depth and composition
that are used in BIDI‐NH3 flux modeling in CMAQ, which reduces bias and error in simulated NHx concen-
trations and deposition (Bash et al., 2010, 2013; Cooter et al., 2012; Massad et al., 2010). EPIC uses WRF
meteorological data (temperature, PRECIP, relative humidity, solar radiation, and wind speed), background
atmospheric CO2 mixing ratios (consistent with WRF and CMAQ), and representative DD and WD rates
derived from previous (“a priori”) CMAQ simulations (not shown) to create inputs used in the CMAQ
BIDI‐NH3 model. The a priori deposition rates are from a 2004 simulation year with 2011NEI emissions for
theHIST period and from an average of 2048–2050 simulation years using 2040ref emissions for the FUT per-
iod. This represents an approximation of the feedback loop between EPIC fertilizer application and CMAQ
BIDI‐NH3 exchange; however, this approximation has a relatively small impact compared to the WRF
meteorological drivers on future EPIC agroecosystem changes. In fact, the a priori total N deposition to the
CBW is only about 3% lower (not shown) compared to the annual average projected by CMAQ in the FUT
period with 2040ref emissions (see Changes in Nitrogen Deposition to the Chesapeake Bay Watershed).

The FUT EPIC simulations do not assume any land use change or yield/productivity trends, and a
Hargreaves estimate was used for evapotranspiration (ET) (Hargreaves & Allen, 2003), which cannot fully
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Figure 1. Spatial plots of average (a–b) 2011NEI NOx and NH3 emissions and their (c–d) absolute (2040ref – 2011NEI) and (e–f) relative changes (defined in
Table 1) in the future for the CBA. Figures S2 and S3 also show the NOx and NH3 emission changes, and other gas and aerosol emissions, in the entire domain
and CBW for comparison.
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account for climate change plant response with respect to ET (i.e., no stomatal response). EPIC does,
however, include biomass productivity responses in this work. The stomatal ET effects could be captured
in future work if a Penman‐Monteith ET method (Allen, 2005) is used rather than Hargreaves method;
however, this was outside the scope as additional validation/evaluation tests are needed to be sure it is
properly parameterized in EPIC for the regional CONUS domain in this application. Finally, the spin‐up
to the FUT climate scenarios in EPIC does not currently allow for crop variety (e.g., 60‐, 90‐, and 120‐day
corn) to change, which would influence the crop rate of maturity. The downscaled WRF and EPIC
simulations are described further below (see Analysis of Simulation Dynamics).

2.3. Simulation Design

Table 2 shows the WRF‐CMAQ simulation design for the HIST and FUT time periods. Three simulations
include one HIST run and two FUT runs to examine the potential impacts of climate and agroecosystem
(i.e., EPIC‐driven) changes (FUT_CLIM) and the combined climate + agroecosystem + emission changes
(FUT_EMIS) over the CBW.

3. Evaluation of Downscaled Simulations

Dynamically downscaled climate‐air quality simulations using a similar methodology were typically within
defined modeling performance benchmarks and consistent with results from other studies using finer‐scale
meteorology (Seltzer et al., 2016 and references within). Therefore, the WRF‐CMAQ regional climate‐air
quality modeling methodology utilized here should not introduce significant bias in projected N deposition
over the CBW.

The analysis and evaluation of the downscaled WRF‐CMAQ focus on two regions: (1) a CBW Critical
Conservation Area based on shapefiles available from the United States Department of Agriculture
National Resources Conservation Service (www.nrcs.usda.gov), shaded in purple in Figure S4 (right panel)
(hereafter referred to as CBW), and (2) the N airshed around and within the CBW (hereafter referred to as
CBA) based on Dennis (1997) and Paerl et al. (2002), and shaded in dark green in Figure S4 (right panel).
Following Paerl et al. (2002), the CBA is defined as the region within which most of the N deposition to
the CBW can be attributed to changes in sources (i.e., emissions) or influences (i.e., climate) occurring
within the region. The concept of a normalized range of influence of an airshed source region for watersheds
is defined in Dennis (1997).

The 10‐year monthly average and seasonal cumulative distribution functions of the HIST and FUT_CLIM
simulations in the CBA are compared against hourly 0.31° fields from the Climate Forecast System
Reanalysis (CFSR) (Saha et al., 2010) for T2 and against three‐hourly 32‐km North American Regional
Reanalysis (NARR) (Mesinger et al., 2006) fields for precipitation (Figure S4). Figure S5 provides analogous
plots for the CBW region to assess its evaluation and potential differences at the watershed scale, while

Table 2
Summary of the three CESM downscaled WRF‐CMAQ simulation sets conducted in this study

WRF‐CMAQ simulation sets Descriptions

Run # Run details Abbreviation Impacts on future nitrogen
deposition in the CBWHIST = 1995–2004

FUT = 2045–2054
1 CESM: HIST climate HIST None

WRF: HIST with changing GHG levels
EPIC: HIST agroecosystem
CMAQ: HIST emissions (2011NEI)

2 CESM: FUT RCP4.5 climate FUT_CLIM Future climate and
agroecosystem changesWRF: FUT with changing RCP4.5 GHG levels

EPIC: FUT RCP4.5 agroecosystem
CMAQ: HIST emissions (2011NEI)

3 CESM: FUT RCP4.5 climate FUT_EMIS Future climate, agroecosystem,
and emission changesWRF: FUT with changing RCP4.5 GHG levels

EPIC: FUT RCP4.5 agroecosystem
CMAQ: FUT emissions (2040ref)
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qualitative seasonal average spatial comparisons of HIST to CFSR and NARR over the WRF model domain
are provided in Figures S6 and S7. The HIST T2 agrees well with CFSR and has a correlation coefficient (R) of
0.997 in both the CBA and CBW (Figures S4–S5); however, there is a systematic positive (i.e., warm) mean
bias of about +1.3 K and +1.5 K in the CBA (Figure S4a) and CBW (Figure S5a), respectively. These results
agree well with Figure 1 in Seltzer et al. (2016), where they used a reanalysis dataset as input to test a similar
WRF downscaling methodology and found R values of 0.997–0.999 for T2 across different regions of the
CONUS. The seasonal average spatial analyses of T2 from HIST also qualitatively agree well with CFSR
across the WRF domain (Figure S6), and, thus, the results lend confidence to downscaling CESM RCP4.5
with WRF. Although HIST and NARR PRECIP agree well during the fall, winter, and early spring, the cor-
relation is relatively lower at 0.595 (0.222) in the CBA (CBW) (Figures S4f and S5f), and there is a notable
overprediction during the summer convective season in the eastern United States (Figure S7). See Text S3
for more statistics and detailed discussion regarding the T2 and PRECIP evaluation and potential reasons
for model over‐ or underpredictions.

The downscaled HIST simulation has a good agreement with the weekly National Atmospheric Deposition
Program (NADP) PRECIP observations with an R, root mean square error, and normalized mean bias of
about 0.6, 30 mm, and +1.7%, respectively (Figure S8a; red). The HIST WD of fine particulate matter (aero-
dynamic diameter <2.5 μm; PM2.5) sulfate (WD_SO4

2−) and nitrate (WD_NO3
−) simulations (Figures S8b–

S8c) are also in good agreement with NADP, both with an R of about 0.4 and root mean square error (nor-
malized mean bias) of about 0.4 kg/ha (−4%) and 0.3 kg/ha (−14%), respectively. Underpredictions in
WD_SO4

2− and WD_NO3
− are comparable to those shown in Appel et al. (2011) in the eastern United

States for the summer season. While errors in precipitation in part impact the WD_SO4
2− and WD_NO3

−

bias in the eastern United States (Foley et al., 2016), there may also be impacts on the larger underpredic-
tions in WD_NO3

− from missing emission sources, such as missing lightning NOx emissions. Contrary to
WD_SO4

2− and WD_NO3
−, the simulations of WD_NH4

+ are overpredicted compared to NADP
(Figure S8d). Bash et al. (2013) show that including the EPIC and BIDI‐NH3 model coupling in the
CMAQ model leads to increases in WD_NHx (WD_NH3 + WD_NH4

+) in the eastern United States, which
likely contributes to this overprediction in WD_NH4

+. See Text S4 for more detailed information regarding
these evaluations and discussion of the pertinent reasons behind model over and underpredictions.

4. Results of the Model Projections

The following subsections include analysis and discussion of the climate and agroecosystem changes that are
important in both the CBA and CBW regions and the ultimate impacts on N deposition to the CBW for the
FUT_CLIM and FUT_EMIS scenarios.

4.1. Changes in Downscaled Climate

Figure 2 shows WRF HIST and FUT_CLIM predictions of 10‐year and annual averaged T2, 2‐mwater vapor
mixing ratio (Q2), 10‐m wind speed (WSPD10), planetary boundary layer height (PBLH), instantaneous
downward shortwave radiation taken at the surface (SWDNB), and 10‐year and annual total PRECIP over
the CBA (CBW region Figure S10). Figure 3 further shows the 10‐year average spatial plots of HIST values
and absolute (FUT_CLIM – HIST) and relative change ([(FUT_CLIM – HIST) /HIST] × 100%) plots for
the CBA region (CBW region Figure S11). For additional analysis of the meteorological variables' seasonal
changes, Figures S12–S17 show monthly spatial difference (absolute and relative) plots for both the CBA
and CBW regions.

The 10‐year average FUT_CLIM T2 and Q2 reflect pronounced and widespread increases in the CBA and
CBW, which show CBA area‐averaged absolute (relative) increases of 1.6 K (14% in °C) and 0.8 g/kg (9%),
respectively (Figures 2a–2d and 3a–3f). The CBW area‐averaged increases are comparable to those in CBA,
at 1.7 K (14% in °C) and 0.8 g/kg (10%), respectively (Figure S11). In fact, the widespread increases in T2
and Q2 in the CBA and CBW occur during most seasons of the year, except for a few months in late fall
and winter (November, January, and February) (Figures S12 and S13). Consistent with Figure S4a, the stron-
gest warming on average occurs in the spring, with amaximumT2 increase inMarch (3.1 K for CBAand 3.3 K
for CBW; Figures S12a–S12b), while themost significantmoistening of the atmosphere occurs in the summer
and fall, with maximum Q2 increases in July–September (both CBA and CBW about 1.2–1.3 g/kg; Figures
S13a–S13b). Similar warming and moistening patterns have been shown in other applications of
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downscaled global RCP4.5 scenarios to regional WRF simulations over North America, with approximate
domain‐wide average increases of about 1 K and 0.2 g/kg based on estimates taken from a number of different
studies that compared future climate changes out to about 2050 (Nolte et al., 2018; Trail et al., 2013; Yahya
et al., 2017), with additional warming over CONUS (increase >1–2 K) projected under RCP4.5 late in the
21st century (Nazarenko et al., 2015; Nolte et al., 2018; Separovic et al., 2013). In a more direct comparison,
Figure 1 of Yahya et al. (2017) shows widespread increases in a similar future period (2046–2055) for T2
and Q2 across CONUS, with substantial spatial variability (grid resolution of 36 km), and an approximate
increase of about 1.5–2.0 K and 0.8–1.0 g/kg near the CBA andCBW regions. The results in ourwork are com-
parable to Yahya et al. While there is large interannual variability about the 10‐year average for T2 and Q2
(Figure 2), the variability is less extreme in the FUT_CLIM compared to HIST for T2, as the respective stan-
dard deviation is reduced by almost half in the FUT_CLIM in the CBA (Figures 2a–2b) and CBW
(Figures S10a–S10b). The interannual variability is nearly constant/slightly lower for Q2 from the HIST to
the FUT_CLIM (Figures 2c–2d and S10c–S10d). The interannual variability is in part driven by using yearly
changing RCP4.5 GHGmixing ratios in the downscaledWRF simulations for bothHIST and FUT_CLIM (see
section 2.2), which has not been applied in some previously discussed studies due to the relatively recent
implementation of dynamicCAMGHGs for use inWRF (sinceVersion 3.5). Considering that NH3 air‐surface
fluxes in the CMAQBIDI‐NH3model are a strong function of atmospheric (canopy) temperature (Bash et al.,
2013), the FUT_CLIM increases in T2 suggest a direct climate impact on future N deposition changes to the
CBW.Changes in T2 also impact the thermodynamic formation of PM2.5 ammoniumnitrate (NH4NO3), espe-
cially in the winter, which can alter the future interplay between the atmospheric total (wet + dry) deposition
of oxidized (OxN ~ NOx + NO3

−) and reduced (NHx ~ NH3 + NH4
+) N species.

Figure 2. Comparisons of downscaled WRF HIST and FUT_CLIM predictions for 10‐year (horizontal lines) and annual averages of (a–b) T2,(c–d) Q2, (e–f)
WSPD10, (g–h) PBLH, (i–j) SWDNB, and (k–l) PRECIP area‐averaged over the CBA. Annual average values above and below the 10‐year average are shown in
red and blue, respectively. The CBA region analyzed is shown in the green‐shaded area in the shapefile panel in Figure 3 and more precisely shown in the model
spatial analysis in Figure S4. The standard deviations used to address the interannual variability are also shown.
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Changes inmean daily T2 used in EPICwill change the vegetation and the timing of crop development (grow-
ing season), which can change temporal patterns of nutrient use/demand and soil erosion and nutrient loss.
Increased/decreased temperature stress will also impact vegetation growth and development (magnitude as
well as timing), which will, in turn, impact fertilizer demand and timing (see section 4.2 for more details).

There is relatively more interannual and interseasonal variability for the other meteorological variables
compared to T2 and Q2, in conjunction with slight 10‐year average FUT_CLIM decreases for WSPD10,
and increases in PBLH, SWDNB, and PRECIP in the CBA and CBW (Figures 2e–2l, 3g–3r, S10, and S14–
S17). The interannual variability (i.e., standard deviation) slightly decreases for WSPD10, stays nearly
constant/slightly increases for PBLH and SWDNB, and moderately increases for PRECIP from the HIST
to the FUT_CLIM in the CBA.While there are widespread increases inWSPD10 in the western and northern
United States that generally trend with the largest increases in T2 under RCP4.5 (not shown), there are both
WSPD10 increases and decreases in the CBA (area‐average approximately +0.01 m/s; +1.7%) and predomi-
nantly decreases in the CBW (area‐average approximately−0.04 m/s;−3.1%). TheWSPD10 changes are also
in agreement with Yahya et al. (2017) for these regions. Changes in WSPD10 in the CBA and CBW are
important because (1) they directly impact wind erosion and sediment/N loss in EPIC that can result in
NH3 fertilizer application changes coupled to CMAQ‐BIDI‐NH3 exchange, and future N deposition effi-
ciency changes to the CBW and (2) they have additional implications for understanding how changes in
future WSPD10 forcing in the CBW may affect changes in wind stress dynamics, as well as other nutrient
loading and cycling in the Chesapeake Bay (Fisher et al., 2015). In fact, some of the largest WSPD10
decreases occur in the estuary region of the CBW (Figure S11i), but there is significant interseasonal and spa-
tial variability in the direction of WSPD10 change (Figure S14b).

The changes in PBLH are strongly tied to changes in T2 in the CBA and CBW, as the warmer future climate
dominates the 10‐year average PBLH increase, despite a slight decrease in the average WSPD10 (more pro-
lifically in the CBW). Furthermore, in the FUT_CLIM, all years above (below) the average for T2 are also
associated with an above (below) average PBLH, except in 2054. The small annual average PBLH increase
in the FUT_CLIM of 1–6 m in the CBA and CBW also approximately agrees with Yahya et al. (2017) for a

Figure 3. Comparisons of downscaled annual averageWRFHIST and absolute and relative changes (FUT_CLIM –HIST) for (a–c) T2, (d–f) Q2, (g–i) WSPD10, (j–l)
PBLH, (m–o) SWDNB, and total (p–r) PRECIP over the CBA. The average, maximum, and minimum values over the CBA region are shown above each panel. The
relative (%) changes for T2 in (c) are performed based on Celsius temperatures (°C = °K – 273.15).
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similar region, where they show a <10‐m increase. An increase in PBLH will help to enhance the dispersion
of N containing pollutants, thus helping reduce their concentrations and potential deposition in the future;
however, we note that there is also significant interseasonal variability in the PBLH changes, where there are
numerous months (e.g., March–July and November) that show an area‐average decrease in PBLH for the
FUT_CLIM (Figure S15a–S15b).

The overall annual average increases in SWDNB are slight, with an absolute (relative) increase in the CBA of
1.2 W/m2 (1.6%) and CBW of 1.6 W/m2 (1.8%), and are similar but on the low‐end of the increases shown in
Trail et al. (2013) of 0–6W/m2 over North America. The changes in SWDNB are inherently tied to changes in
cloud variables, both of which (not shown for clouds) have significant spatiotemporal variability
(Figures S16a–S16b). There appears to be a trend, however, of predominant large increases in SWDNB in
the late spring‐summer (May–August) and moderate decreases in the winter and early spring (December–
April). The warmer (T2) and moister (Q2) late spring‐summer months in the FUT_CLIMmay result in more
subgrid convective clouds, less overall cloud fraction, and more shortwave radiation reaching the surface,
while the opposite is true in winter (except in January) when themoister atmosphere leads to generally more
grid‐scale cloudiness and less SWDNB. Such changes in total cloud fractions in the model, however, are
inherently skewed by artifacts of the subgrid cloud parameterization. Nonetheless, changes in SWDNB
can impact future N deposition to the CBW in two main ways: (1) changes in SWDNB can influence the
photochemical impacts on important atmospheric species, either directly or indirectly impacting some N
species (e.g., easily degradable NO2), and (2) changes in the amount of deep/moist convective clouds result
in changes to the frequency and intensity of RC and associated NOx emissions through the CMAQ lightning
NOx parameterization.

EPIC vegetative growth is also a function of photosynthetic active radiation, and changes in SWDNB can
change vegetation growth and development and subsequent fertilizer demand and timing.

The 10‐year average of total annual PRECIP tends to increase slightly for FUT_CLIM compared to HIST and
has significant interannual (Figures 2k–2l) and spatiotemporal variability (Figures 3p–3r and S17a–S17b)
over the CBW. Overall there is an annual absolute (relative) increase in PRECIP of about 44 cm (3.8–3.9%)
in the CBA and CBW, where other previous studies show qualitatively similar PRECIP increases over the
eastern United States for the RCP4.5 and other scenarios (e.g., Separovic et al., 2013; Trail et al., 2013;
Wang & Kotamarthi, 2015; Yahya et al., 2017). The interseasonal variability in PRECIP (Figures S17a–
S17b) is in loose agreement with the direction in SWDNB changes due to cloud variable impacts, where aver-
age monthly increases (decreases) in PRECIP are associated with decreases (increases) in SWDNB; however,
there is significantly more spatial variability in PRECIP than SWDNB. The changes in PRECIP have a direct
impact on the WD of N species to the CBW, and this relationship will be explored more in later sections.

EPIC vegetation growth is also a function ofmoisture stress; if there is too little PRECIP, growth is reduced (as
well as N demand). If there is too much PRECIP and soils become saturated, this causes aeration stress (i.e.,
plants are drowning) that will reduce vegetation growth and N demand. The bottom line is that if tempera-
ture, photosynthetic active radiation, and precipitation variability increase, stress variability will increase,
and then so might N demand and applications (i.e., become more variable in both timing and magnitude).

4.2. Changes in Agroecosystem Processes

There are over 87,000working farms in theCBW,which include farmingpractices such as dairy andbeef cattle,
poultry operations, grain and produce production, and tree and shrub nurseries (www.chesapeakebay.net).
Thus, the farming practices and fertilization characteristics modeled by EPIC, and coupled to CMAQ BIDI‐
NH3 exchange, are important to the simulations of future changes in total N deposition in the CBW. Crop‐
specific EPIC simulated inorganic NH3 fertilization rates, timing, depths (dictated by N form/application
method), and managed soil pH values are used as inputs to the CMAQ BIDI‐NH3 model (Cooter et al.,
2012). More specifically, EPIC estimates of the NH3 application rate (L1_ANH3 and L2_ANH3) and layer
Łcontent (L1_NH3 and L2_NH3) in applied fertilizers at two depths of 1 and 5 cm are input to the CMAQ
BIDI‐NH3 model's calculation of the soil NH4

+ pool, H+ changes, and soil emission potential (Γg, defined as
[NH4

+]/[H+]) for different agricultural LU categories (Bash et al., 2013; Cooter et al., 2012).

Future changes to CO2 (higher in FUT_CLIM), atmospheric deposition, and the downscaledWRF simulation
output can impact EPIC predictions of NH3 fertilizer application rates (L1_ANH3 and L2_ANH3) and layer
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content (L1_NH3 and L2_NH3), which can directly alter the dynamics of CMAQ BIDI‐NH3 exchange (i.e.,
NH3 deposition vs. evasion) in the CBA, and lead to changes in the resulting N deposition in the CBW. We
note that both future EPIC simulations (Table 2: FUT_CLIM and FUT_EMIS) use the average 2048–2050
CMAQ deposition that is reflective of the 2040ref emissions changes and that this approximation also has a
relatively small impact compared to theWRFmeteorological drivers on future EPIC agroecosystem changes.
Figure 4 shows the 10‐year average HIST and FUT_CLIM monthly values of total L1_ANH3, L2_ANH3,
L1_NH3, and L2_NH3 summed across all crop types in the CBA. Figure S18 shows the same analysis for
the CBW, while Figures S19–S20 show similar fertilizer application and content plots for the total (rainfed
+ irrigated) hay, alfalfa, other_crop/mixed grains (including spring rye, flaxseed, forage seed, mustard
seed, sunflowers, canary seed, ginseng, buckwheat, sugar beets, caraway seed, triticale, and other field
crops), corn, soybeans, and wheat (includes both spring and winter wheat types) crop categories (and their
respective fractions compared to the sum of all crops), as these crop categories cover the largest fractional
areas in the CBA and CBW (see spatial plots based on the 2006 NLCD (National Land Cover Database;
Data found at https://www.mrlc.gov/)‐BELD4 (Biogenic Emissions Landuse Database Data found at
https://www.cmascenter.org) in Figures S19–S20), while the sum of all other crop types represent <0.5% of
the average LU cover.

As the timing of fertilizer applications is tied to temperature, warmer spring T2 in the FUT_CLIM compared
to HIST (Figures S4a and S12) results in earlier (March–April) planting in the CBA, withmost fertilizer appli-
cations happening at the topsoil layer of L1_ANH3, but also slightly earlier applications in L2_ANH3, which
is typically a pelletized or some combined dry fertilizer product (Figures a–b and S18a–S18b). The timing of
higher L1_ANH3 earlier in spring is due to a combination of hay (40%), corn (40%), and soybean (20%) crops
in the CBA and CBW (Figures S19a–S19b). The earlier planting dates are elucidated in Figures S21a–S21b,
where there are widespread decreases (FUT_CLIM – HIST) in the 10‐year average of yearly total planting
Julian dates (IPLD) summed across all crop types. The faster summer drop in L1_ANH3 by July is driven

Figure 4. Ten‐year average monthly values of HIST (blue) and FUT_CLIM (red) CBA area‐totaled NH3 (a–b) fertilizer
application rate (L1_ANH3 and L2_ANH3) and (c–d) layer content (L1_NH3 and L2_NH3) for the sum (rainfed + irri-
gated) of all 2006 NLCD‐BELD4 crop types.
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by earlier or more quickly maturing crops and an earlier harvest of corn (80%) and other_crop/mixed grains
(20%), which is also shown in Figures S21a–S21b with similar plots of earlier (i.e., negative FUT_CLIM –

HIST) total harvest Julian dates (IHVD). The faster late spring drop in L2_ANH3 by May is similarly due to
earlier harvest of corn (60%) and other_crop/mixed grains (40%) in the CBA and CBW (Figures S19a–
S19b). We note that a reason why the other_crop/mixed grains may account for such a large fraction of the
total is because it is modeled as corn, which may or may not be correct for certain grains, and is certainly
an approximation for small grains.

The slightly larger peak in L1_ANH3 in June is solely due to corn crops, while the considerably larger peak
in L2_ANH3 (injected anhydrous NH3 fertilizer mainly associated with corn production) for FUT_CLIM by
April is due to a combination of corn (80%) and other_crop/mixed grains (20%) (Figures S19a–S19b). An
initial hypothesis is that the increase in both L1_ANH3 and L2_ANH3 peaks is driven by higher productivity
in spring (due to higher CO2) and thus higher N demand. Figures S21a–S21b show, however, that there are
widespread decreases in forage yields (YLDF) and grain yields (YLDG) for corn, as well as widespread
decreases in YLDG for other_crop/mixed grains for the FUT_CLIM compared to HIST (YLDF = 0 for this
crop category). The decrease in yields is largely due to an increase in number of water stress days
(Figures S21a–S21b). Thus, it is possible that the larger peaks in L1_ANH3 and L2_ANH3 are due to
increased PRECIP in the FUT_CLIM (Figures 2, 3, S11, and S17a–S17b), greater N losses from runoff due
to approximately greater PRECIP intensity in EPIC, and thus additional N demand. This is confirmed by
the widespread increases in the projected N loss due to runoff (QNO3) in both CBA and CBW
(Figures S21a–S21b). As N deposition goes directly in the layer 2 soil pools, there may be additional impacts
on the enhanced L2_ANH3 peaks (maximized in April) due to reduction in anthropogenic NOx emissions
(see Emission Projections to 2040) that lead to decreases in future total N deposition (primarily from OxN
reductions). Finally, the fall and winter fertilizer applications are essentially unchanged between HIST
and FUT_CLIM, but there is a slightly larger peak for L1_ANH3 and L2_ANH3 in October that is dominated
by the wheat and corn crops in CBA and CBW (Figures S19a–S19b).

There are consistently larger L1_NH3 in the FUT_CLIM compared to HIST (except for July) (Figures 4c and
S18c), which is driven by a combination of hay (January–March and July–August; average ~30%), corn
(January–June and September–December; average ~25%), wheat (January–March and October; average
~20%), alfalfa (January–September; average ~15%), and other_crop/mixed grains (January–June; average
~10%) (Figures S20a–S20b). There is considerably less of a difference for L2_NH3, with the largest
FUT_CLIM increase in the winter months of January–February (Figures 4d and S18d) due mainly to hay,
corn, and wheat (total average ~70%) and a smaller contribution from alfalfa, other_crop/mixed grains,
and soybeans (total average ~30%) (Figures S20a–S20b). Since there is little to no difference in the preceding
fall L2_ANH3 application to the L2_NH3 increases in the winter, an initial hypothesis for the larger
FUT_CLIMvalues in layer 2 is that potentially less soilmoisture in the FUT_CLIM leads to less N percolation
(PRKN) or denitrification (DN). Figure S21 shows widespread FUT_CLIM increases in PRKN and DN, how-
ever, which is likely due to increased average PRECIP in the FUT_CLIM. Amore likely possibility for the lar-
ger L2_NH3 in winter is more rapid N mineralization because of more plant residue, which is an EPIC

biomass response to the increased CO2 for the FUT_CLIM runs. Figures S21a–S21b confirm the widespread
increases in the future N (GMN) and humusmineralization (NMN) (enhances soil inorganic N), compared to
much smaller (~factor of 5) increases in the DN (reduces soil inorganic N) for the sum of all crops in the CBA
and CBW. These factors are consistent with the increased T2 and adequate Q2 in the FUT_CLIM (Figures 2,
3), which in essence “speed‐up” biogeochemical cycling in the future EPIC simulations.

The enhanced surface pattern of L1_NH3 for FUT_CLIM does not correlate particularly well with applica-
tion of L1_ANH3; and thus, it is not a direct result of increased fertilizer application to the surface in the
FUT_CLIM. The increase in L1_NH3 for the FUT_CLIM is due to a combination of impacts from (1)
enhanced GMN and NMN across all months; (2) increased total soil organic carbon, which is a metric for
enhanced N residue and mineralization; and (3) increased N fixation (possibly as a response to decreased
N deposition) from prolific N fixation crops such as alfalfa occurring across many months (Figures S21a–
S21b). The increases in NH3 fertilizer application and soil content shown in Figure 4 have impacts on
BIDI‐NH3 exchange and N deposition in the CBW (see Changes in Nitrogen Deposition to the Chesapeake
Bay Watershed).
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4.3. Changes in Nitrogen Deposition

Projected changes in the climate/agroecosystem under the RCP4.5 scenario (sections 4.1 and 4.2) and pro-
jected changes in regional 2040ref emissions inputs (section 2.2.3) impact the future projections of N deposi-
tion to the CBW. There is also significant spatial variability in future NOx and NH3 emissions, as well as
spatial and seasonal variability in the future climate/agroecosystem changes. In this section we analyze
the absolute and relative (%) changes (Figure S22) in total deposition (TD) of OxN (TD_OxN), NHx

(TD_NHx), and total N (TD_N = TD_OxN+ TD_NHx) to the CBW driven by the climate and agroecosystem
changes (FUT_CLIM) and the combined FUT_CLIM and emissions (FUT_EMIS) changes for all four
seasons (Figure 5).

When accounting for FUT_CLIM changes only, there are average increases in the TD_N during all seasons
in the CBW (Figures 5a2–5d2), which during the winter and spring are primarily driven by a combination of
TD_OxN and TD_NHx increases (Figures 5e2–5f2 and i2–j2), and during the summer and fall are primarily
due to increases in TD_NHx (Figures 5k2–5l2). There are relatively small decreases in TD_OxN in the sum-
mer and fall for FUT_CLIM (Figures 5g2–5h2) and an area of larger TD_NHx decreases, which contribute
to areas of decreased TD_N in the summer and fall. This pattern of widespread increases in TD_N for
FUT_CLIM is strongly driven by widespread regions of increased PRECIP and wet deposition to the CBW
(Figures 3q–3r and S11q–S11r), and likewise there is a spatially similar area of PRECIP and TD_N decreases
during the summer in the CBW (Figure S17b). The larger relative increases in TD_NHx compared to TD_OxN
(some average decreases) during all seasons in FUT_CLIM are in part due to widespread increases in T2 in
the CBA and CBW (Figures 3b–3c and S11b–S11c), which drive a thermodynamic partitioning (i.e., volatili-
zation effect) toward enhanced NH3 concentrations in the atmosphere, and consequently more DD of NH3

compared to the OxN gases.

The higher EPIC L1_ANH3 and L1_NH3 (topmost soil layer fertilizer application rate/content) in the
FUT_CLIM scenario (Figures 4a and 4c) are also indicative of a higher initial soil NH4

+ pool and soil emis-
sion potential, Γg (modeled in CMAQ as a function of fertilizer application followingMassad et al., 2010) and
consequently a higher soil compensation point (Cg). The higher Cg contributes to a higher overall canopy
NH3 compensation point (Cc) in CMAQ's BIDI‐NH3 exchange model (Bash et al., 2013), which may lead
to enhanced NH3 evasion in areas just outside of the CBW, especially those regions with high NH3 emissions
estimates from fertilizer application due to agricultural management practices (e.g., elevated hay and corn
crop percentages in CBA; Figure S20a). This could theoretically lead to more TD_NHx in the CBW down-
stream of such areas in the CBA.

Including the effect of the projected 2040ref emissions in the FUT_EMIS simulations results in a widespread
decrease in TD_N in the CBW, with an area‐averaged seasonal range in absolute (relative %) decreases of
0.52–0.62 kg/ha (17–28%) (Figures 5a3–5d3). This is in stark contrast to the FUT_CLIM simulations and
clearly demonstrates the benefits of decreased anthropogenic NOx emissions in the 2040ref case.
Decreases in TD_N in FUT_EMIS case are largely dominated by decreases in TD_OxN, which have a seaso-
nal range of about 0.54–0.60 kg/ha (42–48%) in the CBW (Figures 5e3–5h3). Despite the widespread
decreases in TD_N and TD_OxN, there are widespread increases in TD_NHx (except in the summer from
enhanced PRECIP and WD) due to relatively constant (or slightly increasing) agricultural NH3 emissions
in the projected 2040ref case (compared to decreases in NOx and SOx emissions), which lead to a seasonal
range of about −0.02 to +0.14 kg/ha (−0.5 to +16%) in the CBW. While there are definitive climate and
agroecosystem impacts on future TD_N changes (mainly increases), the TD_N changes (mainly decreases)
in FUT_EMIS in the CBW are dominated by future decreases in NOx emissions and TD_OxN, in conjunction
with a shifting paradigm of increased NH3 emissions and TD_NHx.

This shift toward relative decreases in oxidized N deposition and increases in reduced N deposition has an
impact on the seasonal TD_N deposition budget, which includes relative (%) changes to the WD and DD
of OxN and NHx in the CBW (Figure 6). The associated absolute changes are shown in Figure S23.

There are minimal changes in the relative contributions to the TD_N budget in the FUT_CLIM scenario
(under constant emissions) compared to HIST, with only slight (~1–3%) decreases in DD_OxN and
DD_NHx (winter only) and increases in WD_NHx and WD_OxN (winter only) proportions in the CBW.
There are larger changes in the TD_N budget in the FUT_EMIS scenario, with decreases in the proportion
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of DD_OxN (~10–15%) and WD_OxN (~2–3%) and increases in DD_NHx (~10–13%) and WD_NHx (~2–6%).
The most notable is the shift to an increase in the DD_NHx proportion (annual CBW average ~12%), where
the increases in DD_NHx are dominated by increases in DD_NH3 (DD_NH3 is much faster than DD_NH4

+),
which are larger than the increases in average NH3 emissions in the CBA (~7%; Figure 1f) and decreases in
the CBW (~1%; Figure S3f), due to a reduction of ambient NH4

+ aerosols from SOx and NOx 2040ref emission
controls (i.e., more NH3 available to deposit).

5. Summary and Discussion

Decreases in atmospheric emissions of NOx and the subsequent change in deposition have been documented
as one of the largest causes of reductions of nitrogen (N) loading to the CBW (Shenk&Linker, 2013). Here we
estimate that atmosphericNdeposition is projected to continue to decrease from theHIST (1995–2004) period
(representative of the 2011 emission year) levels due to emission reductions by approximately 21% despite a
small, approximately 4%, atmospheric penalty associated with changes in climate by the FUT (2045–2054)
period (midpoint year of 2050, representative of 2040ref emission projections) levels (Table 3).

The deposition changes for individual N containing pollutants, however, are not proportional. We estimate
that the total N deposition will follow the historical trend (Li, Schichtel, et al., 2016) of increases in the

Figure 5. Spatial plots of the 10‐year average seasonal totals (HIST; column 1) and absolute differences (FUT_CLIM, column 2, and FUT_EMIS, column 3) for (a–d)
TD_N, (e–h) TD_OxN, and (i–l) TD_NHx in the CBW. The average relative changes (defined in Table 1) are shown in the bottom left‐hand corner of each
FUT_CLIM and FUT_EMIS panel (based on Figure S22).
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reduced N fraction (Figure 6). This is primarily due to the decreased NOx emissions, while NH3 emissions
have remained relatively static (Table 1). Atmospheric aerosol processes also play a role in this change.
Historical NOx and SOx reductions have decreased ambient concentrations of PM2.5 by approximately 45%
in the Mid‐Atlantic United States since 2000 (https://www.epa.gov/air‐trends/). The decrease in the atmo-
spheric aerosol burden decreases the amount of NH3 that can formNH4 aerosols, which leaves more gaseous
NH3 in the atmosphere that has a much faster deposition velocity than particulate NH4

+ and consequently
increases both the ambient NH3 and NH3 DD near agricultural sources. This has been observed in satellite
observations (Warner et al., 2017), while our projections are further confirmed by other recent historical esti-
mates in Zhang et al. (2019) and additional “on‐the‐books” projections (with a static climate) to 2030 that
project the NHx portion of the total N deposition to continue to increase despite a reduction in the total N
load (Figure 7).

Changes in climate are expected to contribute to reductions in dissolved oxygen and further stress coastal
water quality (Breitburg et al., 2018). Projected decreases in the annual average surface wind speed, and
increases in temperature and precipitation in the simulations here, suggest a potential increase in future con-
ditions associated with hypoxia in the Chesapeake Bay. The atmospheric loading of N to the CBW, however,

Figure 6. Stacked bar plots of the 10‐year average (HIST, FUT_CLIM, and FUT_EMIS) percent of DD_OxN (red),
WD_OxN (yellow), DD_NHx (blue), and WD_NHx (gray) of the seasonal total N deposition (TD_N) to the CBW.

Table 3
Magnitude of TD_N over the total areas of the CBW, the bay and its tributaries, and tidal wetlands for HIST, FUT_CLIM, and FUT_EMIS

CBW region Total CBW area Bay and tributaries Tidal wetlands area

Area (ha) 16,575,939 1,160,057 114,931
Average annual HIST TD_N (kg/ha) 9.6
Annual total HIST TD_N (kg) 159,129,010 11,136,544 1,103,336
Average annual FUT_CLIM TD_N (kg/ha) 10.0 (+4%)
Annual total FUT_CLIM TD_N (kg) 164,930,589 11,542,564 1,143,562
Average annual FUT_EMIS TD_N (kg/ha) 7.6 (−21%)
Annual total FUT_EMIS TD_N (kg) 125,479,855 8,781,629 870,026

Note. The average annual TD_N in kg/ha is based on the spatial average over CBW, and relative change (%) for the FUT_CLIM and FUT_EMIS is also shown in
parenthesis.
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are projected to decrease from current estimates (Figure 7), where current
modeling estimates indicate that the nutrient loading is themainmechan-
ism driving hypoxia in the Chesapeake Bay (Li, Lee, et al., 2016).
Additionally, there is a climate penalty associated with NHx deposition,
where increases in ambient temperatures have been shown to increase
the NH3 emissions in the bidirectional NH3 (BIDI‐NH3) modeling frame-
work employed here and increases in temperature have been associated
with higher atmospheric NH3 concentrations (Sutton et al., 2013). This
is captured in the NH3 deposition increases from our simulations with
incremental changes in climate and climate + emissions (Figure 5).

We note that there is a potential for economic uncertainty in the EPIC
simulations, which has an impact on CMAQBIDI‐NH3 exchange and pro-
jections in N loading to the CBW. In the real world, farmers are not able to
predict the correct amount of fertilizer to apply to meet demand, and thus
the ability to predict the amount to put on each year becomes more uncer-
tain. This can lead to either underapplication (some potential yield loss, as
more N would lead to higher yields) or overapplication in different
regions, which represents increased economic costs (e.g., putting on N
when crops cannot use it because of stress and greater losses to the envir-
onment because the crops are not taking up the N). Furthermore, while
there is confidence in the EPIC sensitivity/response of the biogeochemical

system and direction of change in the HIST and FUT scenarios, certain aspects of the EPIC processes (e.g.,
nitrification) are currently being improved that would affect theN budget and overall confidence in predicted
magnitudes for the changes.

In conclusion, a modeling framework has been developed here that allows for an improved estimation of the
impact of climate change, agricultural practices, and emission reductions on N deposition to the Chesapeake
Bay. Our application of a regional‐scale meteorological model forced by large‐scale motions of the global
CESM has yielded deposition results that are comparable to retrospective model simulations of Zhang et al.
(2019) (and the “on‐the‐books” projections to 2030) that used meteorological data assimilation (Figure 7).
We estimate that the atmospheric loading to the CBW will decrease by approximately 21% from 2011 values
by about 2050. This includes approximately a 4% offset in deposition (Table 3) due to the change in climate
(e.g., temperature, precipitation, and wind speed effects). The composition of the N deposition to the
Chesapeake Bay is becoming increasingly dominated by NHx due to reductions in NOx and SOx emissions
and the reduced atmospheric aerosol burden associated with the emission reductions. The shift is likely to
alter the biogeochemical cycling of the deposited N and may be more bioavailable for algae. Finally, the
importance of reduced anthropogenic emissions of NOx on future N deposition loading to the CBW cannot
be overstated.

To address the uncertainties involved in model scale and land use impacts, future work includes running a
similar configuration of the downscaled WRF‐CMAQ model with additional nested domains at finer scales
(e.g., ≤12 km) while also incorporating the effects of land use changes. This will allow for an assessment of
the sensitivity to model grid scale and to investigate a more comprehensive interplay between climate, emis-
sions, and land use changes on N deposition to the CBW. The effects of model scale and land use change on
the results, however, will likely be a smaller driver than the strong anthropogenic emission signal shown in
this work.

Disclaimers

Although this work has been reviewed and approved for publication by the U.S. EPA, it does not necessarily
reflect the views and policies of the agency.

The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the
author(s) and do not necessarily reflect the views of NOAA or the Department of Commerce.

Figure 7. Total N deposition to the CBW from 2002 to 2050, the dotted line,
and the proportion of deposition as NHx dry deposition, NHxwet deposition,
OxN dry deposition, and OxN wet deposition, pie charts. The simulations
done in this study are represented by the blue points (i.e., represented by
2011 emissions year and the midpoint of FUT period, 2050), and the other
historical simulations are described in Zhang et al. (2019). Additional
projections to about 2030 are based on “on‐the‐books” emission projections
with a static climate.
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