5,807 research outputs found

    Nondegenerate Fermions in the Background of the Sphaleron Barrier

    Get PDF
    We consider level crossing in the background of the sphaleron barrier for nondegenerate fermions. The mass splitting within the fermion doublets allows only for an axially symmetric ansatz for the fermion fields. In the background of the sphaleron we solve the partial differential equations for the fermion functions. We find little angular dependence for our choice of ansatz. We therefore propose a good approximate ansatz with radial functions only. We generalize this approximate ansatz with radial functions only to fermions in the background of the sphaleron barrier and argue, that it is a good approximation there, too.Comment: LATEX, 20 pages, 11 figure

    Positional Differences in Training Load During Matches and Practices in Collegiate Female Soccer Players

    Get PDF
    Click the PDF icon to download the abstract

    Mach's Principle and Model for a Broken Symmetric Theory of Gravity

    Get PDF
    We investigate spontaneous symmetry breaking in a conformally invariant gravitational model. In particular, we use a conformally invariant scalar tensor theory as the vacuum sector of a gravitational model to examine the idea that gravitational coupling may be the result of a spontaneous symmetry breaking. In this model matter is taken to be coupled with a metric which is different but conformally related to the metric appearing explicitly in the vacuum sector. We show that after the spontaneous symmetry breaking the resulting theory is consistent with Mach's principle in the sense that inertial masses of particles have variable configurations in a cosmological context. Moreover, our analysis allows to construct a mechanism in which the resulting large vacuum energy density relaxes during evolution of the universe.Comment: 9 pages, no figure

    High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system

    Get PDF
    We present an experimental study on the drilling of metal targets with ultrashort laser pulses at high repetition rates (from 50 kHz up to 975 kHz) and high average powers (up to 68 Watts), using an ytterbium-doped fiber CPA system. The number of pulses to drill through steel and copper sheets with thicknesses up to 1 mm have been measured as a function of the repetition rate and the pulse energy. Two distinctive effects, influencing the drilling efficiency at high repetition rates, have been experimentally found and studied: particle shielding and heat accumulation. While the shielding of subsequent pulses due to the ejected particles leads to a reduced ablation efficiency, this effect is counteracted by heat accumulation. The experimental data are in good qualitative agreement with simulations of the heat accumulation effect and previous studies on the particle emission. However, for materials with a high thermal conductivity as copper, both effects are negligible for the investigated processing parameters. Therefore, the full power of the fiber CPA system can be exploited, which allows to trepan high-quality holes in 0.5mm-thick copper samples with breakthrough times as low as 75 ms. © 2008 Optical Society of America

    LiFE Assessment Tool

    Get PDF
    As part of an ongoing study to construct a molecular Turing machine in which a polymer chain is encoded via allosteric information transfer between macrocyclic complexes, we describe the thermodynamic and kinetic characterization of a multicomponent self-assembled system based on a zinc porphyrin macrocyclic compound, a bidentate ligand (1,4-diazabicyclo[2.2.2]octane, DABCO), and a viologen-substituted polymer guest. Initial addition of DABCO to the porphyrin macrocycle in chloroform solution leads to the formation of a stable 2:1 (porphyrin:DABCO) dimeric complex, even under dilute conditions, by means of strong cooperative interactions involving hydrogen and metal-ligand bonds. Further titration of the porphyrin-DABCO mixtures with the polymer gives rise to a complex array of species in the solution. The system is analyzed in detail by a combination of spectroscopic measurements and computational modeling. Each association constant in the binding scheme and the fraction of each individual complex that is formed in solution are determined precisely using a mass-balance model. Kinetic studies revealed that the rates of the polymer threading and dethreading in and out of the dimeric system are remarkably slow, indicating that the polymer is locked inside the cavity of the stable 2:1 dimeric complex as a result of strong allosteric interactions
    • …
    corecore