3,194 research outputs found

    Mach's Principle and Model for a Broken Symmetric Theory of Gravity

    Get PDF
    We investigate spontaneous symmetry breaking in a conformally invariant gravitational model. In particular, we use a conformally invariant scalar tensor theory as the vacuum sector of a gravitational model to examine the idea that gravitational coupling may be the result of a spontaneous symmetry breaking. In this model matter is taken to be coupled with a metric which is different but conformally related to the metric appearing explicitly in the vacuum sector. We show that after the spontaneous symmetry breaking the resulting theory is consistent with Mach's principle in the sense that inertial masses of particles have variable configurations in a cosmological context. Moreover, our analysis allows to construct a mechanism in which the resulting large vacuum energy density relaxes during evolution of the universe.Comment: 9 pages, no figure

    41Ca in tooth enamel. part I: A biological signature of neutron exposure in atomic bomb survivors

    Get PDF
    The detection of 41Ca atoms in tooth enamel using accelerator mass spectrometry is suggested as a method capable of reconstructing thermal neutron exposures from atomic bomb survivors in Hiroshima and Nagasaki. In general, 41Ca atoms are produced via thermal neutron capture by stable 40Ca. Thus any 41Ca atoms present in the tooth enamel of the survivors would be due to neutron exposure from both natural sources and radiation from the bomb. Tooth samples from five survivors in a control group with negligible neutron exposure were used to investigate the natural 41Ca content in tooth enamel, and 16 tooth samples from 13 survivors were used to estimate bomb-related neutron exposure. The results showed that the mean 41Ca/Ca isotope ratio was (0.17 ± 0.05) × 10-14 in the control samples and increased to 2 × 10-14 for survivors who were proximally exposed to the bomb. The 41Ca/Ca ratios showed an inverse correlation with distance from the hypocenter at the time of the bombing, similar to values that have been derived from theoretical free-in-air thermal-neutron transport calculations. Given that γ-ray doses were determined earlier for the same tooth samples by means of electron spin resonance (ESR, or electron paramagnetic resonance, EPR), these results can serve to validate neutron exposures that were calculated individually for the survivors but that had to incorporate a number of assumptions (e.g. shielding conditions for the survivors).Fil: Wallner, A.. Ludwig Maximilians Universitat; Alemania. Universitat Technical Zu Munich; Alemania. Universidad de Viena; AustriaFil: Ruhm, W.. Helmholtz Center Munich German Research Center For Environmental Health; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Rugel, G.. Ludwig Maximilians Universitat; Alemania. Universitat Technical Zu Munich; AlemaniaFil: Nakamura, N.. Radiation Effects Research Foundation; JapónFil: Arazi, Andres. Universitat Technical Zu Munich; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Faestermann, T.. Universitat Technical Zu Munich; AlemaniaFil: Knie, K.. Universitat Technical Zu Munich; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Maier, H. J.. Ludwig Maximilians Universitat; AlemaniaFil: Korschinek, G.. Universitat Technical Zu Munich; Alemani

    Electronic structure of strained InP/GaInP quantum dots

    Full text link
    We calculate the electronic structure of nm scale InP islands embedded in Ga0.51In0.49PGa_{0.51}In_{0.49}P. The calculations are done in the envelope approximation and include the effects of strain, piezoelectric polarization, and mixing among 6 valence bands. The electrons are confined within the entire island, while the holes are confined to strain induced pockets. One pocket forms a ring at the bottom of the island near the substrate interface, while the other is above the island in the GaInP. The two sets of hole states are decoupled. Polarization dependent dipole matrix elements are calculated for both types of hole states.Comment: Typographical error corrected in strain Hamiltonia

    Interferometry with Bose-Einstein Condensates in Microgravity

    Full text link
    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.Comment: 8 pages, 3 figures; 8 pages of supporting materia

    SCOPE: a scorecard for osteoporosis in Europe

    Get PDF
    Summary The scorecard summarises key indicators of the burden of osteoporosis and its management in each of the member states of the European Union. The resulting scorecard elements were then assembled on a single sheet to provide a unique overview of osteoporosis in Europe. Introduction The scorecard for osteoporosis in Europe (SCOPE) is an independent project that seeks to raise awareness of osteoporosis care in Europe. The aim of this project was to develop a scorecard and background documents to draw attention to gaps and inequalities in the provision of primary and secondary prevention of fractures due to osteoporosis. Methods The SCOPE panel reviewed the information available on osteoporosis and the resulting fractures for each of the 27 countries of the European Union (EU27). The information researched covered four domains: background information (e.g. the burden of osteoporosis and fractures), policy framework, service provision and service uptake e.g. the proportion of men and women at high risk that do not receive treatment (the treatment gap). Results There was a marked difference in fracture risk among the EU27. Of concern was the marked heterogeneity in the policy framework, service provision and service uptake for osteoporotic fracture that bore little relation to the fracture burden. For example, despite the wide availability of treatments to prevent fractures, in the majority of the EU27, only a minority of patients at high risk receive treatment for osteoporosis even after their first fracture. The elements of each domain in each country were scored and coded using a traffic light system (red, orange, green) and used to synthesise a scorecard. The resulting scorecard elements were then assembled on a single sheet to provide a unique overview of osteoporosis in Europe. Conclusions The scorecard will enable healthcare professionals and policy makers to assess their country’s general approach to the disease and provide indicators to inform future provision of healthcare

    Aromaticity in a Surface Deposited Cluster: Pd4_4 on TiO2_2 (110)

    Full text link
    We report the presence of \sigma-aromaticity in a surface deposited cluster, Pd4_4 on TiO2_2 (110). In the gas phase, Pd4_4 adopts a tetrahedral structure. However, surface binding promotes a flat, \sigma-aromatic cluster. This is the first time aromaticity is found in surface deposited clusters. Systems of this type emerge as a promising class of catalyst, and so realization of aromaticity in them may help to rationalize their reactivity and catalytic properties, as a function of cluster size and composition.Comment: 4 pages, 3 figure

    Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7

    Get PDF
    This paper describes the scientific and structural updates to the latest release of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7 (v4.7) and points the reader to additional resources for further details. The model updates were evaluated relative to observations and results from previous model versions in a series of simulations conducted to incrementally assess the effect of each change. The focus of this paper is on five major scientific upgrades: (a) updates to the heterogeneous N<sub>2</sub>O<sub>5</sub> parameterization, (b) improvement in the treatment of secondary organic aerosol (SOA), (c) inclusion of dynamic mass transfer for coarse-mode aerosol, (d) revisions to the cloud model, and (e) new options for the calculation of photolysis rates. Incremental test simulations over the eastern United States during January and August 2006 are evaluated to assess the model response to each scientific improvement, providing explanations of differences in results between v4.7 and previously released CMAQ model versions. Particulate sulfate predictions are improved across all monitoring networks during both seasons due to cloud module updates. Numerous updates to the SOA module improve the simulation of seasonal variability and decrease the bias in organic carbon predictions at urban sites in the winter. Bias in the total mass of fine particulate matter (PM<sub>2.5</sub>) is dominated by overpredictions of unspeciated PM<sub>2.5</sub> (PM<sub>other</sub>) in the winter and by underpredictions of carbon in the summer. The CMAQv4.7 model results show slightly worse performance for ozone predictions. However, changes to the meteorological inputs are found to have a much greater impact on ozone predictions compared to changes to the CMAQ modules described here. Model updates had little effect on existing biases in wet deposition predictions
    corecore