322 research outputs found

    Distributed MIS in O(log log n) Awake Complexity

    Get PDF
    Maximal Independent Set (MIS) is one of the fundamental and most well-studied problems in distributed graph algorithms. Even after four decades of intensive research, the best known (randomized) MIS algorithms have O(log n) round complexity on general graphs [Luby, STOC 1986] (where n is the number of nodes), while the best known lower bound is [EQUATION] [Kuhn, Moscibroda, Wattenhofer, JACM 2016]. Breaking past the O(log n) round complexity upper bound or showing stronger lower bounds have been longstanding open problems. Energy is a premium resource in various settings such as battery-powered wireless networks and sensor networks. The bulk of the energy is used by nodes when they are awake, i.e., when they are sending, receiving, and even just listening for messages. On the other hand, when a node is sleeping, it does not perform any communication and thus spends very little energy. Several recent works have addressed the problem of designing energy-efficient distributed algorithms for various fundamental problems. These algorithms operate by minimizing the number of rounds in which any node is awake, also called the (worst-case) awake complexity. An intriguing open question is whether one can design a distributed MIS algorithm that has significantly smaller awake complexity compared to existing algorithms. In particular, the question of obtaining a distributed MIS algorithm with o(log n) awake complexity was left open in [Chatterjee, Gmyr, Pandurangan, PODC 2020]. Our main contribution is to show that MIS can be computed in awake complexity that is exponentially better compared to the best known round complexity of O(log n) and also bypassing its fundamental [EQUATION] round complexity lower bound exponentially. Specifically, we show that MIS can be computed by a randomized distributed (Monte Carlo) algorithm in O(log log n) awake complexity with high probability.1 However, this algorithm has a round complexity that is O(poly(n)). We then show how to drastically improve the round complexity at the cost of a slight increase in awake complexity by presenting a randomized distributed (Monte Carlo) algorithm for MIS that, with high probability computes an MIS in O((log log n) log* n) awake complexity and O((log3 n)(log log n) log* n) round complexity. Our algorithms work in the CONGEST model where messages of size O(log n) bits can be sent per edge per round

    Distributed MIS in O(log log n) Awake Complexity

    Get PDF
    Maximal Independent Set (MIS) is one of the fundamental and most well-studied problems in distributed graph algorithms. Even after four decades of intensive research, the best known (randomized) MIS algorithms have O(log n) round complexity on general graphs [Luby, STOC 1986] (where n is the number of nodes), while the best known lower bound is [EQUATION] [Kuhn, Moscibroda, Wattenhofer, JACM 2016]. Breaking past the O(log n) round complexity upper bound or showing stronger lower bounds have been longstanding open problems. Energy is a premium resource in various settings such as battery-powered wireless networks and sensor networks. The bulk of the energy is used by nodes when they are awake, i.e., when they are sending, receiving, and even just listening for messages. On the other hand, when a node is sleeping, it does not perform any communication and thus spends very little energy. Several recent works have addressed the problem of designing energy-efficient distributed algorithms for various fundamental problems. These algorithms operate by minimizing the number of rounds in which any node is awake, also called the (worst-case) awake complexity. An intriguing open question is whether one can design a distributed MIS algorithm that has significantly smaller awake complexity compared to existing algorithms. In particular, the question of obtaining a distributed MIS algorithm with o(log n) awake complexity was left open in [Chatterjee, Gmyr, Pandurangan, PODC 2020]. Our main contribution is to show that MIS can be computed in awake complexity that is exponentially better compared to the best known round complexity of O(log n) and also bypassing its fundamental [EQUATION] round complexity lower bound exponentially. Specifically, we show that MIS can be computed by a randomized distributed (Monte Carlo) algorithm in O(log log n) awake complexity with high probability.1 However, this algorithm has a round complexity that is O(poly(n)). We then show how to drastically improve the round complexity at the cost of a slight increase in awake complexity by presenting a randomized distributed (Monte Carlo) algorithm for MIS that, with high probability computes an MIS in O((log log n) log* n) awake complexity and O((log3 n)(log log n) log* n) round complexity. Our algorithms work in the CONGEST model where messages of size O(log n) bits can be sent per edge per round

    Assessment of Climate Variability of the Greenland Ice Sheet: Integration of In Situ and Satellite Data

    Get PDF
    The proposed research involves the application of multispectral satellite data in combination with ground truth measurements to monitor surface properties of the Greenland Ice Sheet which are essential for describing the energy and mass of the ice sheet. Several key components of the energy balance are parameterized using satellite data and in situ measurements. The analysis has been done for a 6 to 17 year time period in order to analyze the seasonal and interannual variations of the surface processes and the climatology. Our goal was to investigate to what accuracy and over what geographic areas large scale snow properties and radiative fluxes can be derived based upon a combination of available remote sensing and meteorological data sets. For the understanding of the surface processes a field program was designed to collect information on spectral albedo, specular reflectance, soot content, grain size and the physical properties of different snow types. Further, the radiative and turbulent fluxes at the ice/snow surface were monitored for the parameterization and interpretation of the satellite data. Highlights include AVHRR time series and surface based radiation measurements, passive microwave time series, and geodetic results from the ETH/CU camp

    Finding Water Scarcity Amid Abundance Using Human–Natural System Models

    Get PDF
    Water scarcity afflicts societies worldwide. Anticipating water shortages is vital because of water’s indispensable role in social-ecological systems. But the challenge is daunting due to heterogeneity, feedbacks, and water’s spatial-temporal sequencing throughout such systems. Regional system models with sufficient detail can help address this challenge. In our study, a detailed coupled human–natural system model of one such region identifies how climate change and socioeconomic growth will alter the availability and use of water in coming decades. Results demonstrate how water scarcity varies greatly across small distances and brief time periods, even in basins where water may be relatively abundant overall. Some of these results were unexpected and may appear counterintuitive to some observers. Key determinants of water scarcity are found to be the cost of transporting and storing water, society’s institutions that circumscribe human choices, and the opportunity cost of water when alternative uses compete

    FRA2A is a CGG repeat expansion associated with silencing of AFF3

    Get PDF
    Folate-sensitive fragile sites (FSFS) are a rare cytogenetically visible subset of dynamic mutations. Of the eight molecularly characterized FSFS, four are associated with intellectual disability (ID). Cytogenetic expression results from CGG tri-nucleotide-repeat expansion mutation associated with local CpG hypermethylation and transcriptional silencing. The best studied is the FRAXA site in the FMR1 gene, where large expansions cause fragile X syndrome, the most common inherited ID syndrome. Here we studied three families with FRA2A expression at 2q11 associated with a wide spectrum of neurodevelopmental phenotypes. We identified a polymorphic CGG repeat in a conserved, brain-active alternative promoter of the AFF3 gene, an autosomal homolog of the X-linked AFF2/FMR2 gene: Expansion of the AFF2 CGG repeat causes FRAXE ID. We found that FRA2A-expressing individuals have mosaic expansions of the AFF3 CGG repeat in the range of several hundred repeat units. Moreover, bisulfite sequencing and pyrosequencing both suggest AFF3 promoter hypermethylation. cSNP-analysis demonstrates monoallelic expression of the AFF3 gene in FRA2A carriers thus predicting that FRA2A expression results in functional haploinsufficiency for AFF3 at least in a subset of tissues. By whole-mount in situ hybridization the mouse AFF3 ortholog shows strong regional expression in the developing brain, somites and limb buds in 9.5-12.5dpc mouse embryos. Our data suggest that there may be an association between FRA2A and a delay in the acquisition of motor and language skills in the families studied here. However, additional cases are required to firmly establish a causal relationship

    Competition for Cooperation: variability, benefits and heritability of relational wealth in hunter-gatherers

    Get PDF
    Many defining human characteristics including theory of mind, culture and language relate to our sociality, and facilitate the formation and maintenance of cooperative relationships. Therefore, deciphering the context in which our sociality evolved is invaluable in understanding what makes us unique as a species. Much work has emphasised group-level competition, such as warfare, in moulding human cooperation and sociality. However, competition and cooperation also occur within groups; and inter-individual differences in sociality have reported fitness implications in numerous non-human taxa. Here we investigate whether differential access to cooperation (relational wealth) is likely to lead to variation in fitness at the individual level among BaYaka hunter-gatherers. Using economic gift games we find that relational wealth: a) displays individual-level variation; b) provides advantages in buffering food risk, and is positively associated with body mass index (BMI) and female fertility; c) is partially heritable. These results highlight that individual-level processes may have been fundamental in the extension of human cooperation beyond small units of related individuals, and in shaping our sociality. Additionally, the findings offer insight in to trends related to human sociality found from research in other fields such as psychology and epidemiology

    Integrating snow science and wildlife ecology in Arctic-boreal North America

    Get PDF
    Snow covers Arctic and boreal regions (ABRs) for approximately 9 months of the year, thus snowscapes dominate the form and function of tundra and boreal ecosystems. In recent decades, Arctic warming has changed the snowcover\u27s spatial extent and distribution, as well as its seasonal timing and duration, while also altering the physical characteristics of the snowpack. Understanding the little studied effects of changing snowscapes on its wildlife communities is critical. The goal of this paper is to demonstrate the urgent need for, and suggest an approach for developing, an improved suite of temporally evolving, spatially distributed snow products to help understand how dynamics in snowscape properties impact wildlife, with a specific focus on Alaska and northwestern Canada. Via consideration of existing knowledge of wildlife-snow interactions, currently available snow products for focus region, and results of three case studies, we conclude that improving snow science in the ABR will be best achieved by focusing efforts on developing data-model fusion approaches to produce fit-for-purpose snow products that include, but are not limited to, wildlife ecology. The relative wealth of coordinated in situ measurements, airborne and satellite remote sensing data, and modeling tools being collected and developed as part of NASA\u27s Arctic Boreal Vulnerability Experiment and SnowEx campaigns, for example, provide a data rich environment for developing and testing new remote sensing algorithms and retrievals of snowscape properties
    corecore