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Abstract. This study investigates the effect of projected as a case study examining the effects of climate change on
temperature increases on maritime mountain snowpack imaritime snow, which comprises 10 % of the Earth’s seasonal
the McKenzie River Basin (MRB; 3041I&hin the Cas-  snow cover.

cades Mountains of Oregon, USA. We simulated the spa-
tial distribution of snow water equivalent (SWE) in the MRB
for the period of 1989-2009 with SnowModel, a spatially- 1  |ntroduction

distributed, process-based model (Liston and Elder, 2006b).

Simulations were evaluated using point-based measurements1 Significance and motivation

of SWE, precipitation, and temperature that showed Nash-

Sutcliffe Efficiency coefficients of 0.83, 0.97, and 0.80, re- The maritime snowpack of the Western Cascades of the Pa-
spectively. Spatial accuracy was shown to be 82% usincgific Northwest (PNW) United States is characterized by
snow cover extent from the Landsat Thematic Mapper. Theiemperatures near°@ throughout the winter and deep snow
validated model then evaluated the inter- and intra-year sencover that can accumulate to 5000 mm deep (Sturm et al.,
sitivity of basin wide snowpack to projected temperature in-1995). This important component of the hydrologic cycle
creases (2C) and variability in precipitation#10%). Re-  stores water during the winter months (November—March)
sults show that a 2C increase in temperature would shift the when precipitation is highest, and provides melt water that
average date of peak snowpack 12 days earlier and decreasgcharges aquifers and sustains streams (Dozier, 2011) dur-
basin-wide volumetric snow water storage by 56 %. Snow-ing the drier months of the year (June-September). Be-
pack between the elevations of 1000 and 2000 m is the mostause maritime snow accumulates and persists at temper-
sensitive to increases in temperature. Upper elevations weratures close to the melting point, it is fundamentally at
also affected, but to a lesser degree. Temperature increaséisk of warming temperatures (Nolin and Daly, 2006). The
are the primary driver of diminished snowpack accumula-McKenzie River Basin (MRB, Fig. 1), located in the Central
tion, however variability in precipitation produce discernible Western Cascades of Oregon, exhibits characteristics typical
changes in the timing and volumetric storage of snowpackof many watersheds in this region, where maritime snow-
The results of this study are regionally relevant as melt wa-pack provides melt water for ecosystems, agriculture, hy-
ter from the MRB's snowpack provides critical water sup- dropower, municipalities, and recreation — especially in sum-
ply for agriculture, ecosystems, and municipalities through-mer when demand is higher and precipitation reaches a mini-
out the region especially in summer when water demand isnum (United States Army Corps of Engineers, 2001; Oregon
high. While this research focused on one watershed, it serve¥/ater Supply and Conservation Initiative, 2008).
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In the mountains of the Western United States, snow wateabove 1200 m where deep snows accumulate from Novem-
equivalent (SWE, the amount of water stored in the snow-ber through March, increasing their water storage until the
pack) reaches its basin-wide maximum on approximatelyonset of melt, on approximately 1 April. In the MRB regions
1 April (Serreze et al., 1999; Stewart et al., 2004). In theabove 1200 m, the underlying basalt geology provides excel-
PNW, there have been significant declines in 1 April SWE lent aquifer storage that sustains summer flows (Tague and
and accompanying shifts in streamflow have been observe@rant, 2004; Jefferson et al., 2008; Tague et al., 2008; Brooks
(Service, 2004; Barnett et al., 2005; Mote et al., 2005; Luceet al., 2012). Isotopic analysis found that 60—-80 % of summer
and Holden, 2009; Stewart, 2009; Fritze et al., 2011). Thisflow in the Willamette River originated from elevations over
reduction in SWE has been attributed to higher winter tem-1200 m in the Oregon Cascades (Brooks et al., 2012).
peratures (Knowles et al., 2006; Mote, 2006; Abatzoglou, The MRB'’s “reservoir” of snow above 1200m is es-
2011; Fritze et al., 2011). Throughout the region, currentpecially important to the greater Willamette River Basin
analyses and those of projected future climate change im¢30 300 kn?). While occupying 12 % of the Willamette, the
pacts show rising temperatures (Mote and S&la010). MRB supplies nearly 25 % of the late summer discharge at
This increase is expected to transition more snow into rainjts confluence with the Columbia River near Portland, Ore-
resulting in diminished snowpacks, and reduced summergon (Hulse et al., 2002). Over 70 % of Oregon’s population
time streamflow (Service, 2004; Stewart et al., 2004, 2005resides in the Willamette River Basin and the economy and
Barnett et al., 2005; Mote et al., 2005; Stewart, 2009; Moteregional ecosystems depend heavily on the Willamette River,
and Salath, 2010). especially in summer months when rainfall is sparse. This

This problem is not unique to the Oregon Cascades andnakes the MRB'’s seasonal snowpack a key resource for eco-
is of significance globally as snowmelt provides a sustainedogical, urban, and agricultural interests and of great inter-
source of water for over one billion people (Barnett et al., est to water resource managers in the MRB and Willamette
2005; Dozier, 2011). The maritime snow class comprisesRiver Basin.
roughly 10 % of the spatial extent of all terrestrial seasonal Monitoring of the MRB’s seasonal snowpack has been
snow (Sturm et al., 1995) and includes large portions ofconducted for decades; however accurate measurements of
Japan, Eastern Europe, and the western Cordillera of Nortbasin-wide mountain snowpack do not exist. The present-
America. Many of these regions are mountainous, and meaday monitoring of mountain snowpack uses point-based data
surements of snowpack are limited due to complex terrainfrom the Natural Resources Conservation Service (NRCS)
and sparse observational networks. This deficiency limits theSnowpack Telemetry (SNOTEL) network covering an eleva-
ability to accurately predict snowpack and runoff at the basintion range of only 245m (1267-1512 m) in a basin where
scale, especially in a changing climate (Bales et al., 2006snow typically falls at elevations between 750 and 3100 m.
Dozier, 2011). Improvements in quantifying the water stor- While these middle elevations represent roughly 35 % of the
age of mountain snowpack in present and projected climatebasin’s area, they do not quantify SWE at high elevations.
advance the ability to assess climate impacts on hydrologi®©nce the snow melts at the monitoring sites, there is no fur-
processes. While climate impacts on mountain snowpack aréher information even though snow persists at higher eleva-
a global concern, addressing them at the basin-level providegons for several weeks. In the past, this limited configuration
information at a scale that is effective for resource manageof SNOTEL sites has functioned successfully in helping pre-

ment strategies (Dozier, 2011). dict streamflow (Pagano et al., 2004), however the network
was not designed to quantify and evaluate the impacts of pro-
1.2 Study area jected future climate change at the watershed scale (Molotch

and Bales, 2006; Brown, 2009; Nolin et al., 2012). Mean
The McKenzie River Basin has an area of 3042kamd  annual temperatures are projected to increa¥@ By mid-
ranges in elevation from 150 m at the confluence with thecentury, potentially limiting the effectiveness of the current
Willamette River near the city of Eugene to over 3100 m atmonitoring system. These deficiencies underscore the need
the crest of the Cascades. Precipitation increases with effor a spatially detailed understanding of snow water stor-
evation in the MRB. Average annual precipitation rangesage at the watershed scale, which would improve water man-
from approximately 1000 mm in the lower elevations to over agers’ ability to manage this vital resource in the present and
3500 mm in the Cascade Mountains (Jefferson et al., 2008)plan for future projected temperature changes.
With winter air temperatures commonly close té@ pre- Both spatially distributed snow models and remote-
cipitation phase is highly sensitive to temperature and can falkensing data can provide key information on spatially vary-
as rain, snow, or a rain-snow mix. In the MRB, the rain-snow ing snow processes at the watershed scale, and provide diag-
transition zone is broad, ranging from 400 to 1200 m, wherenostic information on relationships between physiographic
a transient snowpack commonly accumulates and melts overharacteristics of watersheds and snowpack dynamics. In
the course of a winter (Tague and Grant, 2004; Jefferson ethe past decade, spatially distributed, deterministic snow-
al., 2008; Tague et al., 2008). The seasonal snow zone (areggmck modeling has made significant advances (Marks et al.,
with a distinct accumulation and ablation period) is situated1999; Lehning et al., 2006; Liston and Elder, 2006b; Bavay
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Fig. 1. Context map for the McKenzie River Basin, Oregon. Model forcing locations are enclosed by a black square.

et al., 2009). Such mechanistic snowpack models also altime steps and at a grid resolution of 100 m. The spatially-
low us to make projections for future climate scenarios. Re-distributed, process-based model SnowModel computes tem-
mote sensing is an effective means of mapping the spatioperature, precipitation, and the full winter season evolution
temporal character of seasonal snow (Nolin, 2011). Rittgerof SWE including accumulation, canopy interception, wind
(2012) used a computationally efficient method to computeredistribution, sublimation/evaporation, and melt (Liston and
Fractional Snow Cover Area (fSCA) from Landsat Thematic Elder, 2006b). The SnowModel framework is comprised of
Mapper in the Sierra Nevada Mountains based on the workKour sub-models. MicroMet provides realistic distributions of
of Rosenthal and Dozier (1996) and Painter et al. (2009)air temperature, humidity, precipitation, temperature, wind
Such data are at a spatial scale comparable to topograph&peed and wind direction, surface pressure, incoming solar
and vegetation variations in the MRB and are appropriate forand longwave radiation (Liston and Elder, 2006a). The En-
capturing the heterogeneous melt patterns in this watershedal sub-model computes the internal energy balance of the
By mapping fSCA, we can obtain an accurate estimate ofsnowpack using atmospheric conditions computed by Mi-
spatially and temporally varying snow extent, however thesecroMet (Iziomon et al., 2003; Liston and Elder, 2006a, b).
data cannot provide estimates of SWE. SnowTran 3-D is a physically-based snow transport model
Using the MRB as a case study that is representativehat distributes the transport and sublimation of snow due to
of mid-latitude maritime snowpacks, this research examinesvind (Liston et al., 2007). SnowPack is a single layer sub-
and quantifies the sensitivity of snowpack to climate changemodel that calculates changes in snow density, depth, and
Specifically the research objectives are to: (1) quantify theSWE from fluxes in precipitation and melt (Liston and Elder,
present-day distribution and volumetric storage of snow wa-2006b). ShowModel was selected because this study required
ter equivalent at the watershed scale and across multipla spatially explicit model that distributes meteorological con-
decades; (2) quantify the watershed scale response of snoditions and simulates detailed calculations of the energy bal-
water equivalent to increases in temperature; and (3) quantifiance with a high degree of accuracy. Because SnowModel
the watershed scale response of snow water equivalent to ins physically-based it accounts for slope and aspect in calcu-
creases in temperature combined with increases or decreasksing the energy balance, which is especially relevant in the
in precipitation. MRB where over 30 % of the basin has slopes greater that
20C°. Additionally the role of land cover (e.g. canopy inter-
ception, sublimation, and unloading) is included in the sim-
2 Methods ulations of snowpack evolution. These physical and environ-
mental boundary conditions would be lost in a simple degree

To accomplish these objectives, we applied SnowModel (Lis-day model. . _
ton and Elder, 2006b) to simulate meteorological and snow Add_ltlo_nally, Sno_WModeI requires only air temperature,
conditions throughout the McKenzie River Basin at daily Precipitation, relative humidity, wind speed, and wind
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Table 1. Meteorological and snow monitoring stations that were applied as model forcings and/or in evaluation of simulatior7ggsults.
— Air TemperatureP — Precipitation, RH — Relative humidity, Wind — Wind speed and direction, SWE — Snow water equivalent; NWS —
National Weather Service, HJA LTER — HJ Andrews Long Term Ecological Research site, NRCS — National Resource Conservation Service.

Used as
Station Measurements model Used in Elevation Run
name used forcing  Evaluation (m) by
Eugene Airport Ty, P Yes No 174 NWS
Trout Creek P No Yes 230 NWS
PRIMET Tair, P, RH, Wind, SWE Yes Yes 430 HJALTER
H15MET Tair, P, RH, Wind No Yes 922 HJALTER
CENMET Tair, P, RH, Wind, SWE No Yes 1018 HJALTER
VANMET Tair, P, RH, Wind, SWE No Yes 1273 HJALTER
UPLMET Tair» P, RH, Wind, SWE Yes Yes 1294 HJIALTER
Santiam Junction Tyj, P, SWE No Yes 1267 NRCS
Hogg Pass Tair, P, SWE Yes Yes 1451 NRCS
McKenzie Tair,» P, SWE Yes Yes 1454 NRCS
Roaring River Tair, P, SWE Yes Yes 1512 NRCS

direction data as its model forcings. These data were readilgeries. Implementing the hourly forcing data would have de-
available for multiple decades. We applied data from severcreased the number of years available for the study by almost
automated weather stations distributed throughout the MRB50 % (a full decade). Additionally, the maritime snowpack of
at elevations ranging from 174 to 1512 m (Fig. 1, Table 1).the MRB does not have a strong diurnal signal because there
Hypsometrically, 74 % of the area of the McKenzie River is little diurnal variability in air temperature. For example,
Basin is encompassed by the elevation ranges of the monitomwe calculated the coefficient of variation (CV) for hourly air
ing sites (430-1512 m), and 85 % of the basin lies below thetemperature in WY 2007 and found that 86 % of all days had
highest elevation site of 1512 m. While higher elevation me-a CV value that varied by only-2 %. This (and other) mar-
teorological measurements would have benefitted the studytime regions have snowpacks that are warm, nearly isother-
access to higher elevations was not logistically feasible. Amal, and highly sensitive to increased temperature. These
spatially-balanced network of input stations was used to crecharacteristics highlight the importance of studies such as
ate a more evenly weighted distribution of forcing data acrosghis to demonstrate the accumulation and ablation sensitiv-
the watershed (Fig. 1 — stations used as model forcings arties of maritime snow. Additionally the study did not fo-
enclosed in a black square). The spatially-balanced networkus on the sub-daily/diurnal dynamics of snowpack, which
was found to be important in distributing precipitatioR)(  would have required hourly data.
and air temperaturef§;;). The MicroMet sub-model usesthe  Meteorological data was available through the study pe-
Barnes Objective Analysis technique, a weighted interpola+iod at 00:00, 06:00, 12:00, 18:00 UTC, and with daily means
tion scheme based on the data spacing from a datum (statiorof air temperature. However, only the 00:00 UTC data from
to the grid cell (Koch et al., 1983). Clusters of stations in the SNOTEL sites are quality assessed (National Resource Con-
center of the model domain were found to negatively impactservation Service, 2013). Test iterations of the model were
model results in the outer regions. The addition of the Eugene&un with individual inputs for each of these times and results
Airport improved model agreement by providing a datum in were compared to independent data for goodness of fit and
the western portion of the basin. The upper elevation SNONash-Sutcliffe Efficiency (NSE) values. The data acquired at
TEL (National Resource Conservation Service, 2012) site€0:00 UTC provided the best goodness of fit and NSE values.
were added to more evenly distribute meteorological condi-We strived to minimize model tuning so we used published
tions in the upper elevations. Discussion on how this configu-values for albedo, albedo decay, and rain-snow temperature
ration was finalized is discussed in greater detail in the modepartitioning rather than use them as tuning parameters for a
calibration sub-section. better fit with input data from other times of the day. Ad-
The study period, WY 1989-2009, was constrained byditionally, daily precipitation measurements begin and end
the availability of meteorological data to drive the model, asat 00:00 UTC, which aggregated precipitation to the correct
stations were required to have a near-complete data recorday. Our approach minimized model tuning and allowed a
(greater than 90 %). A limited dataset of hourly data for me-validated model to be run for multiple decades.
teorological stations (10yr) was available. But because one This 21 yr study period of record includes seasons with
of our primary objectives was to simulate basin-wide snow-above average, normal, and below average snowpack, and
pack over multiple decades, we selected the longer daily timeears influenced by El Kio/La Nifia-Southern Oscillation
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(ENSO) for the study period. This time period represents ashow that the transition from rain to snow exists primarily
warm phase of the Pacific Decadal Oscillation (Brown andbetween a temperature range-e2 to 2°C. Based upon the
Kipfmueller, 2012) and compared with records dating back USACE study the relationship was implemented in the model
70yr, SWE measurements are below the long-term meamsing Eqg. (1).

(Nolin, 2012).

Physical boundary conditions for the model required el- SFE= (0.25% (27516 Tair)) * P 1
evation and land cover for the model domain, which waswhere, SFE (Snow Fall Equivalent) is the amount of amount
112km in the east-west direction and 76 km in the north-of precipitation reaching the ground that falls as sn@w
south direction. Digital elevation data were obtained froms air temperature in degrees Kelvin, aRds total precipita-
the United States Geological Survey's (USGS) Seamless Nation. Rainfall is computed a8 minus SFE. We tested more
tional Elevation Dataset (NED) (Gesch, 2007). The Nationalcomputationally complex rain-snow algorithms and results
Land Cover Dataset (NLCD) (Fry et al., 2009) was also ob-were virtually identical. The USACE linear partition pro-
tained through USGS. The land cover boundary conditionvided higher computational efficiency so we proceeded with
uses vegetation classes (i.e. coniferous forest, barren landjis approach.
so NLCD land cover types were reclassified to the appro- The shortwave albedo of snow)(has significant effects
priate SnowModel land cover code (Sproles, 2012). Bothon surface energy balance, internal energetics, and seasonall
datasets were resampled from 30 m to the model grid resoluevolution of snowpack (Wiscombe and Warren, 1980). Previ-
tion of 100 m resolution. Resampling the 30 m data to a gridous versions of SnowModel included snow albedo as a static,
cell of 100 m captures variability in topography and snow- tunable parameter (Liston and Elder, 2006b). This study ap-
pack across the landscape, while reducing the computationglied an improved snow albedo decay function from Strack
demands by a factor of eleven. Concerns over potential miset al. (2004) where:
classification of land cover that may arise from reclassifica- . .
tion are moderated by landscape patterns in the areas whe];gr non-melting conditions
snowfall occurs. These areas are almost entirely coniferou§: = (@1 —9fnm) (2
forests in the Western Cascades or unforested, exposed land- )
scapes in the High Cascades. Any misclassification in resan2nd, for melting snow
pling would most likely only occur at transitional areas. A a; = (¢t;—1 — &min) * €XP(—Qry) + Umin 3)

greater concern regarding land cover is. thg applicgtion _Of &\hereq, is the snow albedo value used at each time step by
static land cover dataset over a 21 yr period in a region with ahe model in energy balance calculations,; represents the

dynamic forest landscape that includes active timber harvesgnOW albedo at the previous time step, and the decay gradient

and re-planting. However, developing a dynamic land coverig represented by gr=0.018, grm=0.008 for melting and
dataset lies outside the scope of this research.

- _ . hon-melting conditions, respectively. The maximum albedo
The overall goals of providing spatial and temporal esti- value after new snowfall (when new snow deptt2.5 cm)

mates of basin-wide SWE across multiple decades were coMg gt 15 0.8 in unforested areas and to 0.6 in forested areas
pleted in four general steps: (1) apply a physically based(BurIes and Boon, 2011). A minimum snow albedgnf)

spatially distributed model that uses meteorological data ag,5 set to 0.5 in unforested areas and 0.2 in forested areas.

model forcings; (2) calibrate and _validate model (_)utputs OfWe understand that applying a single albedo decay function
P and Ty using independent station data; (3) calibrate andy ;s its jimitations, and does not account for variation in land

validate model outputs of SWE using st_ation data and MapPZover or topographic effects (Molotch et al., 2004). This po-
of sn_oyv.covered area from remote Sensing, and (4) conduct fential source of model error is addressed in the Discussion.
sensitivity analysis of snowpack with regard to temperature

and precipitation. Each of these steps is described in greater 2  Model calibration
detail below.

Model calibration was comprised of two phases that care-
2.1 Model modifications fully examined the accumulation and the ablation periods.

Lapse rate (discussed in next section), the rain-snow parti-
Two primary modifications were made to SnowModel: a tion (Eq. 1), and maximum snow density (330 kgthwere
rain/snow precipitation partition function and an albedo de-the parameters tuned during calibration. The configuration
cay function. These modifications more accurately simulateof meteorological stations also played an important role in
physical conditions, and improved model performance. Themodel calibration, and is discussed later in this section. We
rain/snow precipitation partition function was required be- applied a systematic approach, adjusting a single parameter
cause in maritime climates, wintertime temperatures com+epresentative of published values, ensuring that changes in
monly remain close to ©C and mixed phase precipitation model outputs were a result of modifications to the individ-
events are common. In the PNW, empirical measurements byal parameter. Outputs were qualitatively and quantitatively
the United States Army Corps of Engineers (USACE) (1956)evaluated until the model was calibrated.
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Table 2. Water years used in the calibration and validation of the 2.3 Calibration metrics

model. Selected Values in parentheses represent the deviation from

the mean (in meters) of peak SWE measurements at Santiam Junftash-Sutcliffe Efficiency (NSE) and Root Mean Square Er-
tion, Hogg Pass, Roaring River, and McKenzie. Years noted by aryg, (RMSE) were used to evaluate model®&d Ty, and

* represent years with field measurements of SWE. SWE compared to measured values from SNOTEL stations
and meteorological stations independent of those used in the
model. NSE is a dimensionless indicator of model perfor-

Type of Snowpack Calibration Validation

Low 2001 (-0.35) 1992 {-0.46) mance where NSE 1 when simulations are a perfect match
with observations. For & NSE< 1, the model is more accu-
2004 (0.00), rate than the mean of the observations. While an NSE values
Medium 2007 (0.17), 1990 (-0.09) : - o
2009* (0.31) > 0.50 are considered satisfactory (Moriasi et al., 2007), we
_ used a target threshold of 0.80 or greater for all stations. This
High 2008* (0.57) 1999 (0.71) value represents a model efficiency that is very close to mea-

sured values and is significantly better than using mean val-
ues (Nash and Sutcliffe, 1970; Legates and McCabe, 1999).
The initial phase focused on optimizing the spatially- If NSE is less than 0, the mean is a better predictor (Nash
distributed gridded values of dailf and Ty;;. Because me- and Sutcliffe, 1970; Legates and McCabe, 1999). RMSE in-
teorological conditions are first order controls on snowpackdicates the overall difference between observed and simu-
accumulation and ablation, maximizing the accuracy of thesdated values, and retains the unit of measure (Armstrong and
spatially interpolated and temporally varying model forcings Collopy, 1992). RMSE provided a better understanding of
is an important first step. Without accurate inputs, the resultthe scale of error that occurred in simulations, and was used
ing snowpack might be calibrated to correct values, but notas a metric to improve model results.
for the right reasons (Kirchner, 2006). The second phase fo- Air temperature proved to be a challenging parameter
cused on optimizing simulations of snowpack. Model eval-to calibrate due to the complex terrain of the MRB. Here,
uation used point-based measurements for SWE and Landrue temperature lapse rates do not always follow a linear
sat fSCA remote-sensing data for snow cover extent, protemperature-elevation relationship and synoptic scale atmo-
viding a robust means of model calibration and validation spheric patterns can affect local lapse rates, especially when
(Andersen and Bates, 2001). Prior to the implementation othigh pressure systems dominate causing cold air pooling
the albedo decay function and rain-snow partition, there wagDaly et al., 2010). For the model, we used initial monthly
an overestimation of modeled snow extent compared to théapse rates from the Washington Cascades, roughly 350 km
point-based measurements and remote-sensing data. Howoerth of the MRB (Minder et al., 2010). These lapse rates
ever, once these modifications were incorporated into thevere iteratively adjusted to minimize RMSE for temperature
model, spatial agreement improved considerably. This im-using the forcing and evaluation stations listed in Table 1.
provement makes sense conceptually. The fixed rain-snowhe final model iteration applied monthly lapse rate values
partition simulated 100% of precipitation to fall as snow ranging from 5.5-7Ckm~! and were 1.8C km~1 cooler
when air temperature was € or colder, and lead to an over- than Minder found in the Washington Cascades (Table 3).
estimation of snow. Compounding this overestimation wasMinimum RMSE for some calibration sites were outside of
a fixed albedo that underestimated shortwave energy criticathe target threshold of ZC, as large errors for a few values
to the melt process. The rain-snow partition would propor-can exacerbate RMSE values (Freedman et al., 1991). Thus
tion less precipitation falling as snow, and the albedo decayr? values (Legates and McCabe, 1999) and 95 % confidence
would hasten the melt process. intervals were calculated (Freedman et al., 1991) to augment
The optimal configuration of meteorological stations was model evaluationR? values describe the proportion (0.0 to

determined by iteratively adding individual stations in the 1.0) of how much of the observed data can be described by
model. Results of each iteration were compared to stationshe model, and confidence intervals indicate simulation relia-
independent of those used in the model (Table 1) using metbility. Methods on how to potentially improve lapse rate cal-
rics described later in the next section. Paired sets of waeulations for future work are described in the third paragraph
ter years with statistically high, low, and average peak SWEof the Discussion section.
were used to calibrate and validate the model (Table 2). Cali- Field measurements of SWE acquired during WY 2008
bration was performed on the first set of water years, and themnd 2009 were used to augment model calibration. We mea-
validated to the second set of water years. Once model calisured SWE manually at five sites within the basin (Figs. 1
bration and validation was completed for the selected yearsand 4) from December to July during WY 2009 on approx-
the model was run for WY 1989-2009 to establish a presentimately the first day of each month. Snow densities were
day reference simulation for applying the future climate pro- calculated using monthly SWE measurements at five loca-
jections, and hereafter is referred to as the study period.  tions in the basin. Four snow depth measurements were con-

ducted within one meter of the initial SWE sample. This
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Table 3. Lapse rate valuesC km~1) used in SnowModel and those published by Minder et al. The values posted by Minder et al. (2010)
are for the Washington Cascades, which are approximately 350 km north of the MRB.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

SnowModel 7 173 17 17 8.3 7 55 55 53 6 6.9 7
Minder etal. (2010) 55 58 6.2 6.2 58 55 4 4 38 45 54 55

approach does not provide a detailed measurement of SWB.5 Climate perturbations

in a 100 mx 100 m grid cell, and thus was used as a broad

metric for assessing the magnitude of simulated SWE and he calibrated and validated model was run for the study pe-
the timing of accumulation and ablation. Logistically, this riod and then used to assess the sensitivity of snowpack to
rapid assessment approach allowed samples at all five sitdgcreased temperature and variable precipitation. To deter-
to be conducted in a single day. In addition, colleagues at thénine the response of snowpack to increased temperature and
University of Idaho provided SWE measurements at two lo-changes in precipitation, a sensitivity analysis was conducted
cations in the basin on two dates in WY 2008 and 2009 (Linkin three phases. The first phase increased all temperature in-

etal., 2010). puts for WY 1989-2009 by 2C (hereafter referred to bi2),
which is considered to be the mean annual average tempera-
2.4 Remote sensing based calibration ture increase in the region by mid-century (Mote and Salath

2010). The second and third phases retained the temperature
The spatial extent of modeled snow cover was assessed Uficreases, but also scaled precipitation inputstiy) % to
ing satellite-derived maps of fractional snow-covered aregncorporate the uncertainty in projected future precipitation
(fSCA) The Landsat TM fractional snow covered area data(Mote and Sa|atb, 2010) Hereafter these phases will be re-
were aggregated from 30m data to the 100 m grid resoluferred to byT2P10(representing-2°C and a 10 % increase
tion of SnowModel and converted to a binary grid where jn precipitation), and 2N10(representing-2°C and a 10 %
<15% fSCA was classified as ramow and> 15% fSCA  decrease in precipitation). Results from th&0 % precipita-
was classified as snow in the grid cell. The co-occurrencejon also provide insight into how annual variability in pre-
of modeled and measured snow cover was assessed UsiRgpitation can affect SWE relative to the effects of increased
metrics of accuracy, precision, and recall as in Painter etemperature. The model was then run, applying the three sets

al. (2009).Precisionis the probability that a pixel identi- of scaled meteorological data for the study period of WY
fied with snow indeed has snofRecall the metric that Dong  1989-2009.

and Peters-Lidard (2010) employed, is the probability of de-

tection of a snow-covered pixehccuracyis the probability

a pixel is correctly classified. For detailed explanations of3 Results

these measures and their application to snow mapping, see

Rittger (2012). 3.1 Model assessment

There were a limited number of valid images each win- _
ter because of cloud cover common in maritime climatesModel results were evaluated at SNOTEL stations, meteoro-

and the 16 day repeat cycle of Landsat. For example during!zogical stations in the HJA, and our field measurement sites

WY 2009, only one image between the months of Novem-(Figs. 2—4, Table 4). Model simulations &f and Tair per-

ber and April had a cloud cover less than 25 % in the MRB. formed well at input stations (used to force the model) and
However, each calibration year had at least one image witj€ference stations (used to validate the model) (Fig. 2a and
cloud cover less than 10 % that could be used to effectivelyb)' For years other than callbratlo_n and validation years, the
assess the spatial accuracy of the model. While the day of"ean NSE off and Tyir at all stations was 0.97 and 0.80,
year of Landsat acquisition varied across years, multiple imT€Spectively (Table 4) during the snow season (1 November—
ages were acquired during accumulation, peak, and ablatioR0 June). The model simulations of SWE (Figs. 3 and 4)

phases of SWE. The spatial agreement between fSCA anghowed mean NSE coefficients of 0.83 across the basin at
SnowModel results was evaluated for physiographic Vari_automated SNOTEL locations and 0.70 at the field sites. Spa-

ables including land cover class, elevation, slope and aspecti@!ly: simulations had an overall accuracy of 82 % compared

This allows us to identify the physical characteristics of the {0 the Landsat fSCA data. .
domain that were potentially misrepresented by the model. WY 1997 and 2005 were excluded from these metrics and

in subsequent calculations discussed in this section. Evalu-
ation of model results showed two unrelated problems for
these years. WY 1997 experienced at least 10 winter precip-
itation events> 50 mmday!. Evaluation of the input data
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Table 4. Mean Nash Sutcliffe Efficiency (NSE) Rating and Root Mean Squared Error for Daily SWH; and AnnualP. These stations
all have 10 or years of record.

Mean RMSE
of annual
Mean NSE  # of years cumulative Mean RMSE
Station of SWE of SWE P (m) of T (°C)
PRIMET* - - 0.01 1.89
H15MET - - 0.00 2.14
CENMET 0.33 11 0.04 2.38
Santiam Junction* 0.74 21 0.01 4.00
VANMET 0.18 16 0.00 4.16
UPLMET* 0.88 10 0.01 3.38
Hogg Pass* 0.90 21 0.01 1.04
McKenzie* 0.87 21 0.00 2.81
Roaring River* 0.86 21 0.03 1.29

Stations noted by an asterisk * are SWE measurements that have been reviewed and calibrated.

showed that in a few cases there were significant discreparmmeteorological station (174 m) greatly improved model per-
cies (> 1 m of annual cumulative precipitation) at several of formance. This station provided meteorological input data at
the stations that were used as forcing data. Additionally, aa low elevation and at the western edge of the model domain,
few large precipitation inputs were offset by one day. Thewhich improved the spatial interpolation of precipitation.
shifts were not systematic and appeared to be random in na- Air temperature had a mean RMSE of 2% and mean
ture, most likely due to equipment mistiming at several sta-NSE value of 0.80 (Fig. 2b and Table 4). Model simulations
tions. As a result storms with a significant amount of to- at the Santiam Junction SNOTEL station consistently under-
tal precipitation & 50 mm) were, in effect, double counted performed inrelation to all other stations. Santiam Junction is
and processed on two consecutive days by the model. Whiladjacent to a state highway, an Oregon Department of Trans-
the errors were present in less than 10% of the datasetgortation facility, and an airstrip which combined, make it
these events were characterized by heavy precipitation anthore exposed to wind than the nearby natural forest setting
cold temperatures that increased snowpack accumulatiorfound at the other stations. The station elevation also pro-
This double count of precipitation provided simulations with vided a small bias, as simulations at middle elevation stations
around a 1 m overestimation of SWE, roughly the same mag{800-1300 m) underestimat@y;; on average by 2.9C. The
nitude as the over estimation of annual precipitation. Thusupper elevation stations (1300—1550 m) overestimated tem-
this year was omitted. WY 2005 displayed model deficien-perature on average by 0.26. This bias reflects the to-
cies in resolving lapse rates associated with temperature inpographic character of the MRB. The upper elevation sites
versions. Simulations of spatially distributed gridded temper-are situated in the High Cascades geological province, where
ature in WY 2005 had an RMSE of 38 and NSE of 0.72, the topography has a more gradual slope averaging approx-
whereas the study period had values of°Z5and 0.80, re- imately 10. In the Western Cascades (up to 1300 m) geo-
spectively. This was due to extended periods of high presiogical province, slopes are steeper averaging approximately
sure, which resulted in cold air pooling and negative tem-20°, but are also frequently characterized by slopes upto 50
perature lapse rates (Daly et al., 2010). Extensive snowmelin the Western Cascades during periods of high pressure, itis
and near complete loss of upper elevation snowpack oceommon to have cold air drainage, where cooler, more dense
curred in mid-to-late February (National Resource Conser-air moves down a slope and pools in valleys creating cooler
vation Service, personal communication, 2009; National Retemperatures at lower elevations (Daly et al., 2010).
source Conservation Service, 2012) as unseasonably warm The RMSE forT (2.5°C) was larger than anticipated,
temperatures at higher elevations and unseasonably cool terhowever further analysis showed &3 of 0.85 and 98 % of
peratures at lower elevations persisted for several weeks. Thall Ty, simulations within a 95 % confidence interval. The ad-
model deficiencies caused by such extensive temperature irditional evaluation metrics support the likelihood that a small
versions are addressed in the Discussion section. minority of poor model simulations fdfy;, had a significant
Precipitation was effectively distributed for all stations and impact on RMSE. Efforts in calibrating and evaluating tem-
across the full range of elevations used in the validationperature suggest that the standard approach of applying lin-
(Fig. 2a). The mean RMSE error was 0.01 m and the mearear monthly lapse rates to temperatures would contribute to
NSE value was 0.96 for the full study period. It is important the underperformance found in this study. Ideas on how to
to note that the addition of the low elevation Eugene Airport
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The model simulations of SWE (Figs. 3 and 4) showed
Measured Modeled +2°C

mean NSE coefficients of 0.83 across the basin at point- ~ —==--=
based locations. The data record for SWE is more IImItecIFig. 3. Model Performance of SWE and simulated reductions in

than the records of andTair and only the four SNOTEL SWE with+2°C in water years with below average, above average,

sites (elev. 1267 to 1512m) have _measurgments Of,SWE th"’gnd average snowpacks. These water years were not used in the
span the full data record. These sites provide the primary refjipration process.

erence points for model evaluation (Figs. 3 and 4). Compar-
isons of observed and simulated values showed an RMSE
of 0.13m at all sites used in the validation SNOTEL sites
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15 Field measurement S0 (1460 m) fied as positives). Although the accuracy statistic may rise be-
" Simulated SWE cause of overwhelming numbers of cells in which there is no
05 M snow (Rittger et al., 2012), we include it because a large por-
15- S4 (1244 m) tion of the MRB can be snow covered and validation scenes
- are distributed throughout the season. Disagreement between
S e T the fSCA images and simulations primarily occurred where
= 05 S3 (992 m) the model estimated snow cover and the fSCA did not have
T o025 snow cover (13 %). This degree of False Positive (FP) is ex-
z ‘ /&\ﬁ\,\g o . , pected as remotely sensed data typically omits snow cover in
05 S2 (964 m) the steep and heavily forested landscapes that dominate the
0.25 Western Cascades and the MRB (Nolin, 2011). The inter-
‘ /Jn_aﬂ o , annual changes associated with harvested forest are not ex-
0s S1 (950 m) pressed in the static Iand_cover Qgtasgt, bgt are incorporated
095 i into the fSCA product. This classification discrepancy prop-
i~ o o agated through each year contributing to the lower precision
Octt Dect Feb1 Apri Juned value by decreasing the number of True Positive (TP). Ad-

ditionally, the fSCA binary product classifies any cell with a
Fig. 4. Model performance of SWE at field locations in WY 2009. {r5ctional snow cover value less than 15 %nassnow Even
Location of field sites are shown in Fig. 1. though the Landsat fSCA product was coarsened to 100 m,
cells at the transitional snow line will be classified as no snow
and resultin an increase in False Positive (FP) classifications
(Table 4). Field measurements collected at a range of elevafor modeled snow cover. WY 2006, 2008, and 2009 were
tions during WY 2008 and 2009 also show a high level of the exceptions, showing more False Negative (FN) classifi-
agreement between measured and modeled SWE values wittations, but with a similarly higher level of agreement. For
an NSE coefficient of 0.70 (Fig. 4). These field sites suggestt more detailed discussion of the model assessment using
that model results successfully simulate the timing and mag+emote-sensing data, please refer to Sproles (2012).
nitude of snowpack evolution, especially at the higher eleva-
tions. The lower elevation sites (S1-S3) show a lower level3.2 Impacts of warmer climate and changing
of agreement during the ablation period. Here, spring SWE precipitation on snow
is less than 0.1 m and the mean difference between the ob-
served and simulated values during the ablation period wasensitivity of snowpack to changes in temperature and
only 0.07 m. It is worth noting the highest SNOTEL site is precipitation
situated at an elevation of 1512 m, but 75% of the model-
estimated SWE lies above that elevation. This result is conThe response of snowpack in the MRB in th2 scenario
sistent with the work of Gillan et al. (2010) who found that highlights the sensitivity to temperatures and that the great-
> 70 % of SWE accumulates above the mean elevation surest impact on SWE accumulation comes from more pre-
rounding SNOTEL sites in a snow-dominated watershed incipitation falling as rain rather than snow. Elevations be-
Northwestern Montana. low 1300 m show a substantial loss of SWE accumulation
The length and consistency of the automated SWE datdFig. 3), where elevations around 1500 m suggest consider-
record at lower elevation sites is more limited. With the ex- able losses of SWE, but still retain a seasonal snowpack with
ception of UPL, snow pillows in the HJA are not calibrated distinct accumulation and ablation periods. Mean peak SWE
and the reported data have not been fully quality assured. Théor the basin (thet5day mean from peak SWE) decreased
result is an inconsistent dataset with values that often do noby an average of 56 % for the study period (Figs. 5 and 6a—
represent expected snowpack evolution in the region. Due tal, Table 5). When integrated over the area of the MRB, this
the questionable accuracy of the measured SWE values in thequals an annual average loss of 0.78 lafiwater stored
HJA, these data were not used as a metric for model validaas snow — equivalent to 230 mm of SWE distributed across
tion. This issue also highlights the need for a careful calibra-the basin, and is more than twice the volume the largest im-
tion and regular maintenance of SWE measurement sites. poundment in the MRB (Cougar Reservoir, storage capac-
In the spatial validation, 14 yr of SnowModel simulations ity 0.27 kn?). While temperature is the controlling factor
of snow cover compared to Landsat TM fSC#ofiverted to  for the phase of precipitation and in turn changes in SWE,
snow/no snoyvhad an overall accuracy of 82 % (the ratio of changes in total precipitation also have an impact. 210
correctly identified grid cells — i.e. snow as snow, bare asand T2N10scenarios show losses of mean area-integrated
bare), and overall precision of 71% (the probability that a peak SWE of 0.62 to 0.78 ki(203 to 256 mm of SWE dis-
pixel identified with snow indeed has snow) and an overalltributed across the basin, respectively), and reflect the role
recall of 93 % (the proportion of positives correctly identi- that precipitation variability plays on peak snowpack in the
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Fig. 5. Map of simulated SWE on 1 April 2009 for Reference conditions.

Table 5.Changes in peak SWE, % of peak SWE lost, and the shift With warmer conditions, the date of peak SWE is pro-
in the number of days earlier for the MRB averaged across the refjected to occur earlier in the spring and properly into the

erence period. winter (before the vernal equinox). The average date for sim-
ulated peak SWE in the MRB during the study period is
Mean Peak SWE (kf) 1.26 31 March. However, iff2 the average date for peak SWE
Mean Date of Peak SWE 31 March shifts 12 days earlier in the WY. Similarly, peak SWE arrives
Scenario 6 days and 22 days earlier in thi@P10and T2N10scenar-
ios, respectively, indicating a greater sensitivity in TT&N10
Mean Peak T2 056 than theT2P10scenario.
SWE (km?) T2P10 0.64 We assessed the sensitivity of the snowpack to tempera-
T2N10 0.48 - . .
ture increases by elevation using the 10 day mean of peak
% of Mean Peak T2 56 SWE and frequency of snow cover for WY 2007. The 10 day
SWE Lost T2P10 49 mean of peak SWE minimized the influence of any single
T2N10 62 large accumulation event in order to emphasize the overall
Shift of Mean T2 12 snowpack trend for that season. WY 2007 was a statistically
Date of Peak T2P10 6 average year for SWE at the four SNOTEL sites. Peak SWE
SWE (days) T2N10 22 was —0.07 m of the reference mean and had a standard de-

viation of 0.02 m from the reference mean value (0.83 m). In
WY 2007 the greatest net losses of peak SWE were found be-

MRB. The 0.21km (69 mm) difference of area-integrated tWween 1001 and 1500 m (Fig. 8). This elevation zone gener-
peak SWE predicted by tHE2P10and T2N10scenarios is ated 53 % qf the basin-wide Iosse_s of SWE inTIQesgenario,
substantial and is equal to slightly less than available storagénd comprises 45 % of the basin area. Proportionately, the
at Cougar Reservoir. However°€ temperature increases areas between 1501 and 2000 m.generat_e a more significant
alone result in a 0.70 kirloss (230 mm of SWE distributed cOmponent of peak SWE loss. This elevation zone generated
across the basin, Figs. 6a—d and 7, Table 5). Increased pré> % of the basin-wide peak SWE losses in Tt#&scenario,
cipitation in theT2P10scenario results in additional SWE at but comprises only 17 % of the basin area. The mean loss of
elevations primarily over 1800 m, where &@ increase in peak SWE lost per grid (_:eII was 0.61 min this elevation zone,
temperature is not sufficient to convert snowfall to rainfall or @ compared to 0.26 m in areas between 1001 and 1500 m.
to significantly accelerate snowmelt. However, this increase 1he duration of snow cover by grid cell was assessed

in SWE at the high elevations only partially offsets some of for WY 2007 during the accumulation and melt period be-
the losses at lower elevations. tween 1 January to 30 September 2007. As expected, the

snow cover frequency in th€2 scenario was lower across
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Fig. 6. Map of simulated SWE on 1 April 2009 with &£Z increase in temperatufa). Map of the loss of simulated SWE on 1 April 2009 with

a 2C increase in temperatu(b). SWE by elevation on 1 April 2009 using reference observed @xt&WE by elevation on 1 April 2009,

2009 with a 2C increase in temperatu(d). Each dot on the plot represents a grid cell in the MRB. The values in parentheses represent the
mean SWE and standard deviation of S\ieanSWE, stdSWH{) each elevation band. The upper elevations are not affected as significantly
as the lower elevation snowpack.

the basin, with the areas between 1001 and 1500 m affectedeak SWE occurring 12 days earlier. Elevations between
the most. This range of elevations saw an average of 36 fewet000 and 2000 m are most affected in Ti&scenario as snow
days of snow cover than in the reference year (Fig. 8). Eletransitions to rain, and snow on the ground has an enhanced
vations between- 1501 and 2000 m see a less dramatic re-melt cycle (Fig. 3). Figure 6¢c—d suggest that @C2temper-
duction of snow covered days. Areas betweeB001 and ature increase will shift snowpack characteristics by approx-
2500 m experienced increased losses in snow cover days witimately 250 m. The elevation zone from 1000-1500 m has
elevation. the greatest volumetric loss of stored water (Figs. 6a—d and
8), and represents the largest areal proportion of the basin. In
WY 2009, mean SWE values for this elevation band diminish
4 Discussion considerably, from 0.69 to 0.13 m. Elevations above 2000 m
are affected by warmer temperatures, but to a lesser extent,
Our results quantified the basin-wide distribution and volu- retaining a similar average SWE by elevation (Fig. 6¢—d).
metric storage of snow water in the MRB, which averaged The £10% change in precipitation inputs explores how
1.26 kn¥ of SWE (414 mm distributed across the basin) over variability in precipitation affects snowpack. A 10% de-
the study period. This natural “reservoir” stores roughly five crease in precipitation exacerbates the impacts of temper-
times more water than the largest impoundment in the waterature on snowpack, especially for the elevation zone from
shed. The maritime snowpack of the MRB was highly sensi-1000-2000 m. A 10 % increase in precipitation only slightly
tive to increased temperatures, showing a 56 % loss in peakuffers the loss of peak SWE. A notable result of the 10 %
SWE when temperature forcings were increased BZ.2 increase in precipitation identifies the elevations that are less
Projected warmer conditions also hasten the melt cycle, withsensitive to increased temperature. For instance, peak SWE
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Fig. 7. Peak SWE integrated over the area of the MRB and its sensitivity fiCaicrease in temperature.

increases in th&2P10scenario above- 2000 m where in-  spatially distributed values af and Ty prior to calibrating
creased precipitation also increases the seasonal accumuldre model based on SWE. had a high level of agreement
tion of SWE. However even with gains at high elevations, between observations and simulations (NSE of 0.97). There
there is still a considerable net loss of snowpaek9%)  were distinct similarities between th? (0.85) and NSE of
compared to the study period. Not surprisingly, the responsdy;; (0.80) with the NSE of SWE (0.83) and the accuracy
of snow cover frequency to a°Z increase is very similar of the spatial distribution of snowpack (82 %). These simi-
to the pattern of the change in SWE (Fig. 8). Snow coverlarities lead to the logical conclusion that improvements in
duration in the elevation zone from 1000-1500 m were mostaccuracy of snowpack simulations can be made through im-
affected, with some locations losing more than 80 days ofprovements in temperature simulations.

Snow cover in an average snow yeatr. The challenges in simulatirity; are partially explained by
Initially the meandering nature of the snow loss curvesthe physical characteristics of the MRB. Daly et al. (2010)
in Fig. 8 might not seem intuitive, but can be explained by used empirical data to establish that expected temperature
the topography of the MRB. Elevations betweed001 and  lapse rates that exist between elevation and temperature are
1500 m can receive both rain and snow during the winter,often decoupled from one another and are largely controlled
even though elevations above 1200 m retain a seasonal snowy topography and elevation. Steeper slopes can produce
pack. This elevation range is the most sensitive to increasedold air drainage and different lapse rates than lapse rates for

temperature and shows a transition to a rain-dominated aremore gentle slopes (Daly et al., 2010). Additionally, moisture
with a 2°C increase. Elevations betweer1501 and 2000m content of a storm (as determined by its temperature, source
are less sensitive to increased temperatures and more likelgrea, and history) affects the wet adiabatic lapse rate. Daly
to retain enough precipitation falling as snow with &2in- et al. (2010) suggest that variability in lapse rates may in-
crease to develop distinct periods of accumulation and aberease with projected future climate. Combined, these factors
lation. Retention of the snowpack in this elevation range ishighlight the shortcomings of using a standard temperature
aided by the highly-dissected Western Cascades (which domnlapse rate in a model. Though outside of the scope of this re-
inate this elevation) where adjacent terrain provides shadesearch, an improvement to the monthly static lapse rates used
reduces incoming short-wave radiation, and mitigates potenin SnowModel would be to compute dynamic lapse rates with
tial snow loss (DeWalle and Rango, 2008). This shading alsa dual-pass approach. The first pass through the meteorolog-
helps explain the loss of snow betweer2000 and 2500 m, ical station data would establish the lapse rate and the second
where topography shifts from the rugged Western Cascadepass would apply time step specific lapse rates in the Barnes
to the more exposed High Cascades. This shift towards ®bjective Analysis method to spatially distribute tempera-
gradual, consistent slope in the High Cascades provides ledsire data. This would allow an individual storm’s lapse rate
shading throughout the course of day that would potentiallycharacteristics to be included in the model. A dynamic lapse
mitigate increased temperatures. rate would also help during stable conditions when cold air
Efforts in calibrating and validating the model clearly drainage may be important.
demonstrated that precipitation and temperature are first or- The high level of agreement foP was attained once
der controls on snowpack accumulation and peak SWE. Thign evenly distributed network of input stations was estab-
highlights that it is critical to achieve optimal accuracy of the lished. In initial model runs, incorporating multiple clustered

www.hydrol-earth-syst-sci.net/17/2581/2013/ Hydrol. Earth Syst. Sci., 17, 2581597, 2013



2594 E. A. Sproles et al.: Climate change impacts on maritime mountain snowpack

Minimal relative loss but less area forest canopy. Our validation applied the most recent scien-
3000 { s N . tific advances in calculating fSCA in mountainous regions
/ o tommorature o (Rittger et al., 2013), that can be improved in future work by
2000F _— field validation.
——— e moniloting The elevation range of stations (174-1512m) limited
1000 L = Snowpack sensitive model assessment at higher elevations. Hypsometrically, this
= to temperature comprises 74 % of the basin, and extends from regions domi-
z 0z 0z 05 0B 2o nated by rain into the seasonal snow zone above 1200 m. The
o = U, = Ul = U. = U =1 . . .
= Loss of SWE (m) authors recognize that higher elevation measqrgments would
H have benefitted the study, and could help minimize uncer-
u 3000 | tainty in future research. Unfortunately access to elevations
Increased incoming solar above 2000m was not logistically feasible during the field
T~ radiation due to little vegetation season. Future improvements in field methods would include
2000 and a west-facing aspect at least one high elevation site above 1800 m rather than three
lower elevation sites. Data was also limited temporally, with
10004 hourly data beginning in WY 1999. Because one of the pri-
mary goals of the study was to simulate snowpack for multi-

20 20 50 30 7300 ple decades, we moved forward pragmatically, applying the

best data available supplemented by field observations. We
are applying our findings to improve field measurements in

Fig. 8. Loss of SWE (upper) and snow covered days (lower) by the basin that will ultimately aid future model-based studies

elevation with a 2C increase on 1 April 2007. Each dor on the plot in this watershed and region.

represents a grid cell in the MRB. Snowpack between 1000 and

2000 m are the most sensitive to temperature and show the greatest

losses.

Loss of snow covered days

Looking forward — the impacts of climate perturbations
on snowpack

stations in the HJA decreased overall model accuracy byLosses in SWE and declining snow duration will impact
skewing the data spacing in the weighting scheme. To creyears with high, low and average snowpack and will change
ate a balanced simulation @f;; and P requires stations that the statistical representation and human perceptions of what
are widely spaced and that span the range of elevation values. high, low and average snowpack represents. The MRB will
Iterative testing of the model with various station combina- increasingly experience more precipitation falling as rain
tions revealed that it was best to use just two stations in theather than snow in warmer conditions. Areas presently in the
HJA in the final model implementation: PRI (elev. 430 m) rain/snow transition zone will become dominated almost en-
and UPL (elev. 1294 m). The addition of the Eugene stationtirely by rain. The changes will affect the timing and magni-
(elev. 174 m) also improved model agreement by providing atude of runoff during the winter, spring, and summer months
datum in the western portion of the basin. Incorporating theas more precipitation shifts from snow to rains (Stewart et
meteorological data from Hogg Pass, McKenzie, and Roaral., 2005; Jefferson et al., 2008; Jefferson, 2011).
ing River created anchor points in the eastern portion of the While research has shown that geology controls baseflow
basin. These locations were especially pertinent in addressn sub-basins of the MRB, (Tague and Grant, 2004; Jefferson
ing the challenges associated with distributing temperaturest al., 2008; Tague et al., 2008), shifts in the form of precip-
across the basin. itation will affect the timing and magnitude of peak runoff.
While this study achieved a high level of agreement be-These shifts will be seen at the basin and sub-basin scale,
tween simulated and measured values, the complex topogpotentially influencing water resource managers’ decision-
raphy and land cover of the MRB also introduce potential making process. The moderately high spatial and temporal
sources of error. While the MicroMet and EnBal sub-modelsresolutions of the simulations allow the sensitivity of dimin-
implicitly included land cover and topography in calculat- ished snowpack to be evaluated for the MRB and its sub-
ing incoming shortwave radiation, the albedo function did basins. This range of scales provides the ability to develop
not account for these factors in reflected shortwave radiapotential adaptive water resource management strategies. For
tion. An improved albedo function inclusive of land cover instance, dam operators now release flow in anticipation of
and topography would provide the opportunity to reduce orrunoff generated by snowmelt. But these results suggest that
account for model error. Similarly, there are limitations in sub-basins with headwaters in the elevation zone from 1500—
estimating snow cover extent in complex terrain using re-2000 m will see dramatic losses in SWE and lose the abil-
motely sensed images (Rittger et al., 2013). The thick vegeity to store winter precipitation as snow. As the contribution
tation of the MRB potentially obscures snow underneath thefrom snowmelt decreases and more runoff shifts to earlier in
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the year, dam operations will need to reflect these changesibution of maritime snowpack and its sensitivity to cli-

in their management strategy. Results from this study havemate change at basin scale does not provide global answers,
already helped water resource professionals choose a sitaut it does provide clarity at a scale appropriate for de-
for a new SNOTEL station to augment the existing monitor- veloping management strategies for the future (Seibert and
ing network (Webb, personal communication, 2011) and de-McDonnell, 2002).

velop water management strategies for municipal water use

(Morgenstern, personal communication, 2010).
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