11 research outputs found

    Measuring count rates free from correlated noise in digital silicon photomultipliers

    Get PDF
    Abstract : The characterization of nuisance parameters in digital silicon photomultipliers (SiPMs) is important to their understanding and future development. Methods able to distinguish the types of events are necessary to obtain fair and legitimate measurements. In this work, the zero photon probability (ZPP) method and the time delay (TD) method are used to measure the dark noise of digital SiPMs free from the contribution of correlated noise such as afterpulsing and crosstalk. It highlights the unique features of digital SiPMs such as the holdoff delay, the digital output signal, and the embedded processing (e.g. the selection of the interval sampling width). The two methods correctly separate the correlated and uncorrelated events in digital SiPMs and therefore the determination of a true photon detection efficiency (PDE) is possible. The ZPP method is also implemented inside a digital SiPM using embedded digital signal processing

    Multi-center real-world comparison of the fully automated Idylla (TM) microsatellite instability assay with routine molecular methods and immunohistochemistry on formalin-fixed paraffin-embedded tissue of colorectal cancer

    Get PDF
    Microsatellite instability (MSI) is present in 15-20% of primary colorectal cancers. MSI status is assessed to detect Lynch syndrome, guide adjuvant chemotherapy, determine prognosis, and use as a companion test for checkpoint blockade inhibitors. Traditionally, MSI status is determined by immunohistochemistry or molecular methods. The Idylla (TM) MSI Assay is a fully automated molecular method (including automated result interpretation), using seven novel MSI biomarkers (ACVR2A, BTBD7, DIDO1, MRE11, RYR3, SEC31A, SULF2) and not requiring matched normal tissue. In this real-world global study, 44 clinical centers performed Idylla (TM) testing on a total of 1301 archived colorectal cancer formalin-fixed, paraffin-embedded (FFPE) tissue sections and compared Idylla (TM) results against available results from routine diagnostic testing in those sites. MSI mutations detected with the Idylla (TM) MSI Assay were equally distributed over the seven biomarkers, and 84.48% of the MSI-high samples had >= 5 mutated biomarkers, while 98.25% of the microsatellite-stable samples had zero mutated biomarkers. The concordance level between the Idylla (TM) MSI Assay and immunohistochemistry was 96.39% (988/1025); 17/37 discordant samples were found to be concordant when a third method was used. Compared with routine molecular methods, the concordance level was 98.01% (789/805); third-method analysis found concordance for 8/16 discordant samples. The failure rate of the Idylla (TM) MSI Assay (0.23%; 3/1301) was lower than that of referenced immunohistochemistry (4.37%; 47/1075) or molecular assays (0.86%; 7/812). In conclusion, lower failure rates and high concordance levels were found between the Idylla (TM) MSI Assay and routine tests.Peer reviewe

    Quenching Circuit and SPAD Integrated in CMOS 65 nm with 7.8 ps FWHM Single Photon Timing Resolution

    No full text
    This paper presents a new quenching circuit (QC) and single photon avalanche diode (SPAD) implemented in TSMC CMOS 65 nm technology. The QC was optimized for single photon timing resolution (SPTR) with a view to an implementation in a 3D digital SiPM. The presented QC has a timing jitter of 4 ps full width at half maximum (FWHM) and the SPAD and QC has a 7.8 ps FWHM SPTR. The QC adjustable threshold allows timing resolution optimization as well as SPAD excess voltage and rise time characterization. The adjustable threshold, hold-off and recharge are essential to optimize the performances of each SPAD. This paper also provides a better understanding of the different contributions to the SPTR. A study of the contribution of the SPAD excess voltage variation combined to the QC time propagation delay variation is presented. The proposed SPAD and QC eliminates the SPAD excess voltage contribution to the SPTR for excess voltage higher than 1 V due to its fixed time propagation delay

    Quenching Circuit Discriminator Architecture Impact on a Sub-10 ps FWHM Single-Photon Timing Resolution SPAD

    No full text
    In the field of radiation instrumentation, there is a desire to reach a sub-10 ps FWHM timing resolution for applications such as time-of-flight positron emission tomography, time-of-flight positron computed tomography and time-resolved calorimetry. One of the key parts of the detection chain for these applications is a single-photon detector and, in recent years, the first single-photon avalanche diode (SPAD) with a sub-10 ps timing resolution was presented. To reach such a timing resolution, the SPAD was read out by an operational amplifier operated in open-loop as a comparator. This paper presents a comparison between comparators and inverters to determine which type of leading-edge discriminator can obtain the best single-photon timing resolution. Six different quenching circuits (QCs) implemented in TSMC 65 nm are tested with SPADs of the same architecture and in the same operation conditions. This allows us to compare experimental results between the different QCs. This paper also presents a method to measure the SPAD signal slope, the SPAD excess voltage variation and simulations to determine the added jitter of different leading-edge discriminators. For some discriminator architectures, a cascode transistor was required to increase the maximum excess voltage of the QC. This paper also presents the impact on the single-photon timing resolution of adding a cascode transistor for a comparator or an inverter-based discriminator. This paper reports a 6.3 ps FWHM SPTR for a SPAD read out by a low-threshold comparator and a 6.8 ps FWHM SPTR for an optimized 1 V inverter using a cascode transistor for a higher excess voltage

    3D Photon-To-Digital Converter for Radiation Instrumentation: Motivation and Future Works

    No full text
    Analog and digital SiPMs have revolutionized the field of radiation instrumentation by replacing both avalanche photodiodes and photomultiplier tubes in many applications. However, multiple applications require greater performance than the current SiPMs are capable of, for example timing resolution for time-of-flight positron emission tomography and time-of-flight computed tomography, and mitigation of the large output capacitance of SiPM array for large-scale time projection chambers for liquid argon and liquid xenon experiments. In this contribution, the case will be made that 3D photon-to-digital converters, also known as 3D digital SiPMs, have a potentially superior performance over analog and 2D digital SiPMs. A review of 3D photon-to-digital converters is presented along with various applications where they can make a difference, such as time-of-flight medical imaging systems and low-background experiments in noble liquids. Finally, a review of the key design choices that must be made to obtain an optimized 3D photon-to-digital converter for radiation instrumentation, more specifically the single-photon avalanche diode array, the CMOS technology, the quenching circuit, the time-to-digital converter, the digital signal processing and the system level integration, are discussed in detail

    3D Photon-To-Digital Converter for Radiation Instrumentation: Motivation and Future Works

    No full text
    Analog and digital SiPMs have revolutionized the field of radiation instrumentation by replacing both avalanche photodiodes and photomultiplier tubes in many applications. However, multiple applications require greater performance than the current SiPMs are capable of, for example timing resolution for time-of-flight positron emission tomography and time-of-flight computed tomography, and mitigation of the large output capacitance of SiPM array for large-scale time projection chambers for liquid argon and liquid xenon experiments. In this contribution, the case will be made that 3D photon-to-digital converters, also known as 3D digital SiPMs, have a potentially superior performance over analog and 2D digital SiPMs. A review of 3D photon-to-digital converters is presented along with various applications where they can make a difference, such as time-of-flight medical imaging systems and low-background experiments in noble liquids. Finally, a review of the key design choices that must be made to obtain an optimized 3D photon-to-digital converter for radiation instrumentation, more specifically the single-photon avalanche diode array, the CMOS technology, the quenching circuit, the time-to-digital converter, the digital signal processing and the system level integration, are discussed in detail

    Towards a Multi-Pixel Photon-to-Digital Converter for Time-Bin Quantum Key Distribution

    No full text
    We present an integrated single-photon detection device custom designed for quantum key distribution (QKD) with time-bin encoded single photons. We implemented and demonstrated a prototype photon-to-digital converter (PDC) that integrates an 8 × 8 single-photon avalanche diode (SPAD) array with on-chip digital signal processing built in TSMC 65 nm CMOS. The prototype SPADs are used to validate the QKD functionalities with an array of time-to-digital converters (TDCs) to timestamp and process the photon detection events. The PDC uses window gating to reject noise counts and on-chip processing to sort the photon detections into respective time-bins. The PDC prototype achieved a 22.7 ps RMS timing resolution and demonstrated operation in a time-bin setup with 158 ps time-bins at an optical wavelength of 410 nm. This PDC can therefore be an important building block for a QKD receiver and enables compact and robust time-bin QKD systems with imaging detectors

    Multi-center real-world comparison of the fully automated Idylla (TM) microsatellite instability assay with routine molecular methods and immunohistochemistry on formalin-fixed paraffin-embedded tissue of colorectal cancer

    Get PDF
    Microsatellite instability (MSI) is present in 15-20% of primary colorectal cancers. MSI status is assessed to detect Lynch syndrome, guide adjuvant chemotherapy, determine prognosis, and use as a companion test for checkpoint blockade inhibitors. Traditionally, MSI status is determined by immunohistochemistry or molecular methods. The Idylla (TM) MSI Assay is a fully automated molecular method (including automated result interpretation), using seven novel MSI biomarkers (ACVR2A, BTBD7, DIDO1, MRE11, RYR3, SEC31A, SULF2) and not requiring matched normal tissue. In this real-world global study, 44 clinical centers performed Idylla (TM) testing on a total of 1301 archived colorectal cancer formalin-fixed, paraffin-embedded (FFPE) tissue sections and compared Idylla (TM) results against available results from routine diagnostic testing in those sites. MSI mutations detected with the Idylla (TM) MSI Assay were equally distributed over the seven biomarkers, and 84.48% of the MSI-high samples had >= 5 mutated biomarkers, while 98.25% of the microsatellite-stable samples had zero mutated biomarkers. The concordance level between the Idylla (TM) MSI Assay and immunohistochemistry was 96.39% (988/1025); 17/37 discordant samples were found to be concordant when a third method was used. Compared with routine molecular methods, the concordance level was 98.01% (789/805); third-method analysis found concordance for 8/16 discordant samples. The failure rate of the Idylla (TM) MSI Assay (0.23%; 3/1301) was lower than that of referenced immunohistochemistry (4.37%; 47/1075) or molecular assays (0.86%; 7/812). In conclusion, lower failure rates and high concordance levels were found between the Idylla (TM) MSI Assay and routine tests.Peer reviewe
    corecore