2,669 research outputs found

    Symmetry Analysis in Linear Hydrodynamic Stability Theory: Classical and New Modes in Linear Shear

    Full text link
    We present a symmetry classification of the linearised Navier-Stokes equations for a two-dimensional unbounded linear shear flow of an incompressible fluid. The full set of symmetries is employed to systematically derive invariant ansatz functions. The symmetry analysis grasps three approaches. Two of them are existing ones, representing the classical normal modes and the Kelvin modes, while the third is a novel approach and leads to a new closed-form solution of traveling modes, showing qualitatively different behaviour in energetics, shape and kinematics when compared to the classical approaches. The last modes are energy conserving in the inviscid case. They are localized in the cross-stream direction and periodic in the streamwise direction. As for the kinematics, they travel at constant velocity in the cross-stream direction, whilst in the streamwise direction they are accelerated by the base flow. In the viscous case, the modes break down due to damping of high wavenumber contributions

    A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading

    Get PDF
    The motion of a contact line is examined, and comparisons drawn, for a variety of models proposed in the literature. Pressure and stress behaviours at the contact line are examined in the prototype system of quasistatic spreading of a thin two-dimensional droplet on a planar substrate. The models analysed include three disjoining pressure models based on van der Waals interactions, a model introduced for polar fluids, and a liquid-gas diffuse-interface model; Navier-slip and two non-linear slip models are investigated, with three microscopic contact angle boundary conditions imposed (two of these contact angle conditions having a contact line velocity dependence); and the interface formation model is also considered. In certain parameter regimes it is shown that all of the models predict the same quasistatic droplet spreading behaviour.Comment: 29 pages, 3 figures, J. Eng. Math. 201

    The contact line behaviour of solid-liquid-gas diffuse-interface models

    Full text link
    A solid-liquid-gas moving contact line is considered through a diffuse-interface model with the classical boundary condition of no-slip at the solid surface. Examination of the asymptotic behaviour as the contact line is approached shows that the relaxation of the classical model of a sharp liquid-gas interface, whilst retaining the no-slip condition, resolves the stress and pressure singularities associated with the moving contact line problem while the fluid velocity is well defined (not multi-valued). The moving contact line behaviour is analysed for a general problem relevant for any density dependent dynamic viscosity and volume viscosity, and for general microscopic contact angle and double well free-energy forms. Away from the contact line, analysis of the diffuse-interface model shows that the Navier--Stokes equations and classical interfacial boundary conditions are obtained at leading order in the sharp-interface limit, justifying the creeping flow problem imposed in an intermediate region in the seminal work of Seppecher [Int. J. Eng. Sci. 34, 977--992 (1996)]. Corrections to Seppecher's work are given, as an incorrect solution form was originally used.Comment: 33 pages, 3 figure

    On the moving contact line singularity: Asymptotics of a diffuse-interface model

    Full text link
    The behaviour of a solid-liquid-gas system near the three-phase contact line is considered using a diffuse-interface model with no-slip at the solid and where the fluid phase is specified by a continuous density field. Relaxation of the classical approach of a sharp liquid-gas interface and careful examination of the asymptotic behaviour as the contact line is approached is shown to resolve the stress and pressure singularities associated with the moving contact line problem. Various features of the model are scrutinised, alongside extensions to incorporate slip, finite-time relaxation of the chemical potential, or a precursor film at the wall.Comment: 14 pages, 3 figure

    Sprechen Englisch

    Full text link
    Im DESI-Test zum Sprechen wird sowohl ein kommunikativer als auch ein psycholinguistisch orientierter Weg beschritten. So werden einerseits kommunikative Gesprächselemente mit sowohl eng geführten als auch offenen Antwortmöglichkeiten verwendet und andererseits die sprachlichen Teilkomponenten der mündlich-produktiven Kommunikationskompetenz zum Gegenstand von Testaufgaben gemacht. Damit liegen den Testaufgaben einerseits ein kommunikatives Testkonzept und andererseits ein psycholinguistisches Modell der Sprechfähigkeit zu Grunde. (DIPF/Orig.

    Wetting on a spherical wall: influence of liquid-gas interfacial properties

    Full text link
    We study the equilibrium of a liquid film on an attractive spherical substrate for an intermolecular interaction model exhibiting both fluid-fluid and fluid-wall long-range forces. We first reexamine the wetting properties of the model in the zero-curvature limit, i.e., for a planar wall, using an effective interfacial Hamiltonian approach in the framework of the well known sharp-kink approximation (SKA). We obtain very good agreement with a mean-field density functional theory (DFT), fully justifying the use of SKA in this limit. We then turn our attention to substrates of finite curvature and appropriately modify the so-called soft-interface approximation (SIA) originally formulated by Napi\'orkowski and Dietrich [Phys. Rev. B 34, 6469 (1986)] for critical wetting on a planar wall. A detailed asymptotic analysis of SIA confirms the SKA functional form for the film growth. However, it turns out that the agreement between SKA and our DFT is only qualitative. We then show that the quantitative discrepancy between the two is due to the overestimation of the liquid-gas surface tension within SKA. On the other hand, by relaxing the assumption of a sharp interface, with, e.g., a simple smoothing of the density profile there, markedly improves the predictive capability of the theory, making it quantitative and showing that the liquid-gas surface tension plays a crucial role when describing wetting on a curved substrate. In addition, we show that in contrast to SKA, SIA predicts the expected mean-field critical exponent of the liquid-gas surface tension

    The Consumer's Coal Problem

    Get PDF

    Mine Illumination

    Get PDF

    Influence of temperature fluctuations on plasma turbulence investigations with Langmuir probes

    Full text link
    The reliability of Langmuir probe measurements for plasma-turbulence investigations is studied on GEMR gyro-fluid simulations and compared with results from conditionally sampled I-V characteristics as well as self-emitting probe measurements in the near scrape-off layer of the tokamak ASDEX Upgrade. In this region, simulation and experiment consistently show coherent in-phase fluctuations in density, plasma potential and also in electron temperature. Ion-saturation current measurements turn out to reproduce density fluctuations quite well. Fluctuations in the floating potential, however, are strongly influenced by temperature fluctuations and, hence, are strongly distorted compared to the actual plasma potential. These results suggest that interpreting floating as plasma-potential fluctuations while disregarding temperature effects is not justified near the separatrix of hot fusion plasmas. Here, floating potential measurements lead to corrupted results on the ExB dynamics of turbulent structures in the context of, e.g., turbulent particle and momentum transport or instability identification on the basis of density-potential phase relations
    corecore