198 research outputs found

    A Practical Guide to Rodent Islet Isolation and Assessment

    Get PDF
    Pancreatic islets of Langerhans secrete hormones that are vital to the regulation of blood glucose and are, therefore, a key focus of diabetes research. Purifying viable and functional islets from the pancreas for study is an intricate process. This review highlights the key elements involved with mouse and rat islet isolation, including choices of collagenase, the collagenase digestion process, purification of islets using a density gradient, and islet culture conditions. In addition, this paper reviews commonly used techniques for assessing islet viability and function, including visual assessment, fluorescent markers of cell death, glucose-stimulated insulin secretion, and intracellular calcium measurements. A detailed protocol is also included that describes a common method for rodent islet isolation that our laboratory uses to obtain viable and functional mouse islets for in vitro study of islet function, beta-cell physiology, and in vivo rodent islet transplantation. The purpose of this review is to serve as a resource and foundation for successfully procuring and purifying high-quality islets for research purposes

    Promotion of variant human mammary epithelial cell outgrowth by ionizing radiation: an agent-based model supported by in vitro studies

    Get PDF
    IntroductionMost human mammary epithelial cells (HMEC) cultured from histologically normal breast tissues enter a senescent state termed stasis after 5 to 20 population doublings. These senescent cells display increased size, contain senescence associated beta-galactosidase activity, and express cyclin-dependent kinase inhibitor, p16INK4A (CDKN2A; p16). However, HMEC grown in a serum-free medium, spontaneously yield, at low frequency, variant (v) HMEC that are capable of long-term growth and are susceptible to genomic instability. We investigated whether ionizing radiation, which increases breast cancer risk in women, affects the rate of vHMEC outgrowth.MethodsPre-stasis HMEC cultures were exposed to 5 to 200 cGy of sparsely (X- or gamma-rays) or densely (1 GeV/amu 56Fe) ionizing radiation. Proliferation (bromodeoxyuridine incorporation), senescence (senescence-associated beta-galactosidase activity), and p16 expression were assayed in subcultured irradiated or unirradiated populations four to six weeks following radiation exposure, when patches of vHMEC became apparent. Long-term growth potential and p16 promoter methylation in subsequent passages were also monitored. Agent-based modeling, incorporating a simple set of rules and underlying assumptions, was used to simulate vHMEC outgrowth and evaluate mechanistic hypotheses.ResultsCultures derived from irradiated cells contained significantly more vHMEC, lacking senescence associated beta-galactosidase or p16 expression, than cultures derived from unirradiated cells. As expected, post-stasis vHMEC cultures derived from both unirradiated and irradiated cells exhibited more extensive methylation of the p16 gene than pre-stasis HMEC cultures. However, the extent of methylation of individual CpG sites in vHMEC samples did not correlate with passage number or treatment. Exposure to sparsely or densely ionizing radiation elicited similar increases in the numbers of vHMEC compared to unirradiated controls. Agent-based modeling indicated that radiation-induced premature senescence of normal HMEC most likely accelerated vHMEC outgrowth through alleviation of spatial constraints. Subsequent experiments using defined co-cultures of vHMEC and senescent cells supported this mechanism.ConclusionsOur studies indicate that ionizing radiation can promote the outgrowth of epigenetically altered cells with pre-malignant potential

    Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells

    Get PDF
    Background: Control of stem cell behavior is a crucial aspect of developmental biology and regenerative medicine. While the functional role of electrophysiology in stem cell biology is poorly understood, it has become clear that endogenous ion flows represent a powerful set of signals by means of which cell proliferation, differentiation, and migration can be controlled in regeneration and embryonic morphogenesis. Methodology/Principal Findings: We examined the membrane potential (Vmem) changes exhibited by human mesenchymal stem cells (hMSCs) undergoing adipogenic (AD) and osteogenic (OS) differentiation, and uncovered a characteristic hyperpolarization of differentiated cells versus undifferentiated cells. Reversal of the progressive polarization via pharmacological modulation of transmembrane potential revealed that depolarization of hMSCs prevents differentiation. In contrast, treatment with hyperpolarizing reagents upregulated osteogenic markers. Conclusions/Significance: Taken together, these data suggest that the endogenous hyperpolarization is a functiona

    Resistance to the CCR5 Inhibitor 5P12-RANTES Requires a Difficult Evolution from CCR5 to CXCR4 Coreceptor Use

    Get PDF
    Viral resistance to small molecule allosteric inhibitors of CCR5 is well documented, and involves either selection of preexisting CXCR4-using HIV-1 variants or envelope sequence evolution to use inhibitor-bound CCR5 for entry. Resistance to macromolecular CCR5 inhibitors has been more difficult to demonstrate, although selection of CXCR4-using variants might be expected. We have compared the in vitro selection of HIV-1 CC1/85 variants resistant to either the small molecule inhibitor maraviroc (MVC) or the macromolecular inhibitor 5P12-RANTES. High level resistance to MVC was conferred by the same envelope mutations as previously reported after 16–18 weeks of selection by increasing levels of MVC. The MVC-resistant mutants were fully sensitive to inhibition by 5P12-RANTES. By contrast, only transient and low level resistance to 5P12-RANTES was achieved in three sequential selection experiments, and each resulted in a subsequent collapse of virus replication. A fourth round of selection by 5P12-RANTES led, after 36 weeks, to a “resistant” variant that had switched from CCR5 to CXCR4 as a coreceptor. Envelope sequences diverged by 3.8% during selection of the 5P12-RANTES resistant, CXCR4-using variants, with unique and critical substitutions in the V3 region. A subset of viruses recovered from control cultures after 44 weeks of passage in the absence of inhibitors also evolved to use CXCR4, although with fewer and different envelope mutations. Control cultures contained both viruses that evolved to use CXCR4 by deleting four amino acids in V3, and others that maintained entry via CCR5. These results suggest that coreceptor switching may be the only route to resistance for compounds like 5P12-RANTES. This pathway requires more mutations and encounters more fitness obstacles than development of resistance to MVC, confirming the clinical observations that resistance to small molecule CCR5 inhibitors very rarely involves coreceptor switching

    The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella

    Get PDF
    Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores

    New approaches in the diagnosis and treatment of latent tuberculosis infection

    Get PDF
    With nearly 9 million new active disease cases and 2 million deaths occurring worldwide every year, tuberculosis continues to remain a major public health problem. Exposure to Mycobacterium tuberculosis leads to active disease in only ~10% people. An effective immune response in remaining individuals stops M. tuberculosis multiplication. However, the pathogen is completely eradicated in ~10% people while others only succeed in containment of infection as some bacilli escape killing and remain in non-replicating (dormant) state (latent tuberculosis infection) in old lesions. The dormant bacilli can resuscitate and cause active disease if a disruption of immune response occurs. Nearly one-third of world population is latently infected with M. tuberculosis and 5%-10% of infected individuals will develop active disease during their life time. However, the risk of developing active disease is greatly increased (5%-15% every year and ~50% over lifetime) by human immunodeficiency virus-coinfection. While active transmission is a significant contributor of active disease cases in high tuberculosis burden countries, most active disease cases in low tuberculosis incidence countries arise from this pool of latently infected individuals. A positive tuberculin skin test or a more recent and specific interferon-gamma release assay in a person without overt signs of active disease indicates latent tuberculosis infection. Two commercial interferon-gamma release assays, QFT-G-IT and T-SPOT.TB have been developed. The standard treatment for latent tuberculosis infection is daily therapy with isoniazid for nine months. Other options include therapy with rifampicin for 4 months or isoniazid + rifampicin for 3 months or rifampicin + pyrazinamide for 2 months or isoniazid + rifapentine for 3 months. Identification of latently infected individuals and their treatment has lowered tuberculosis incidence in rich, advanced countries. Similar approaches also hold great promise for other countries with low-intermediate rates of tuberculosis incidence

    Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient

    Get PDF
    In the field of medical diagnostics there is a growing need for inexpensive, accurate, and quick high-throughput assays. On the one hand, recent progress in microfluidics technologies is expected to strongly support the development of miniaturized analytical devices, which will speed up (bio)analytical assays. On the other hand, a higher throughput can be obtained by the simultaneous screening of one sample for multiple targets (multiplexing) by means of encoded particle-based assays. Multiplexing at the macro level is now common in research labs and is expected to become part of clinical diagnostics. This review aims to debate on the “added value” we can expect from (bio)analysis with particles in microfluidic devices. Technologies to (a) decode, (b) analyze, and (c) manipulate the particles are described. Special emphasis is placed on the challenges of integrating currently existing detection platforms for encoded microparticles into microdevices and on promising microtechnologies that could be used to down-scale the detection units in order to obtain compact miniaturized particle-based multiplexing platforms
    corecore