119 research outputs found

    Effect of COVID-19 on Performance and Recovery of Division I Women’s Basketball Players: A Case Study

    Get PDF
    This report aimed to examine the effects of COVID-19 on athletic performance and recovery in women’s basketball players. Twelve participants were included in this case report, with four serving as the test group and eight serving as the control group. All participants wore a Polar GPS unit and a Whoop Strap. The Polar unit was worn during games and practices and used to collect metrics of physical workload. The Whoop strap was worn during daily activities, including periods of sleep, to collect metrics of sleep and recovery. Data were analyzed via descriptive statistics (mean difference ± standard deviations), and T-tests were used to evaluate between-group differences (p \u3c 0.05). To further analyze clinical significance, the Smallest Worthwhile Change (SWC) and Cohen’s d effect sizes were calculated. The results indicated that COVID-19 had the greatest effect on heart rate and sleep metrics with smaller, yet still clinically meaningful, effects on athletic performance. The results show the multisystem effect of COVID-19 on women’s basketball players, including both a physiological and performance decrement during training and less efficient recovery. This was the first study to examine the direct impact of COVID-19 on athletic performance and recovery, and it provides insight into the importance of proper return-to-play considerations

    Extending the Osmometer Method for Assessing Drought Tolerance in Herbaceous Species

    Get PDF
    Community-scale surveys of plant drought tolerance are essential for understanding semi-arid ecosystems and community responses to climate change. Thus, there is a need for an accurate and rapid methodology for assessing drought tolerance strategies across plant functional types. The osmometer method for predicting leaf osmotic potential at full turgor ((o)), a key metric of leaf-level drought tolerance, has resulted in a 50-fold increase in the measurement speed of this trait; however, the applicability of this method has only been tested in woody species and crops. Here, we assess the osmometer method for use in herbaceous grassland species and test whether (o) is an appropriate plant trait for understanding drought strategies of herbaceous species as well as species distributions along climate gradients. Our model for predicting leaf turgor loss point ((TLP)) from (o) ((TLP)=0.80(o)-0.845) is nearly identical to the model previously presented for woody species. Additionally, (o) was highly correlated with (TLP) for graminoid species ((tlp)=0.944(o)-0.611; r(2)=0.96), a plant functional group previously flagged for having the potential to cause erroneous measurements when using an osmometer. We report that (o), measured with an osmometer, is well correlated with other traits linked to drought tolerance (namely, leaf dry matter content and leaf vulnerability to hydraulic failure) as well as climate extremes linked to water availability. The validation of the osmometer method in an herb-dominated ecosystem paves the way for rapid community-scale surveys of drought tolerance across plant functional groups, which could improve trait-based predictions of ecosystem responses to climate change

    A Holistic Approach to Performance Prediction in Collegiate Athletics: Player, Team, and Conference Perspectives

    Get PDF
    Predictive sports data analytics can be revolutionary for sports performance. Existing literature discusses players\u27 or teams\u27 performance, independently or in tandem. Using Machine Learning (ML), this paper aims to holistically evaluate player-, team-, and conference (season)-level performances in Division-1 Women\u27s basketball. The players were monitored and tested through a full competitive year. The performance was quantified at the player level using the reactive strength index modified (RSImod), at the team level by the game score (GS) metric, and finally at the conference level through Player Efficiency Rating (PER). The data includes parameters from training, subjective stress, sleep, and recovery (WHOOP straps), in-game statistics (Polar monitors), and countermovement jumps. We used data balancing techniques and an Extreme Gradient Boosting (XGB) classifier to predict RSI and GS with greater than 90% accuracy and a 0.9 F1 score. The XGB regressor predicted PER with an MSE of 0.026 and an R2 of 0.680. Ensemble of Random Forest, XGB, and correlation finds feature importance at all levels. We used Partial Dependence Plots to understand the impact of each feature on the target variable. Quantifying and predicting performance at all levels will allow coaches to monitor athlete readiness and help improve training

    Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states

    Get PDF
    Low-grade, chronic inflammation has been associated with many diseases of aging, but the mechanisms responsible for producing this inflammation remain unclear. Inflammasomes can drive chronic inflammation in the context of an infectious disease or cellular stress, and they trigger the maturation of interleukin-1β (IL-1β). Here we find that the expression of specific inflammasome gene modules stratifies older individuals into two extremes: those with constitutive expression of IL-1β, nucleotide metabolism dysfunction, elevated oxidative stress, high rates of hypertension and arterial stiffness; and those without constitutive expression of IL-1β, who lack these characteristics. Adenine and N4-acetylcytidine, nucleotide-derived metabolites that are detectable in the blood of the former group, prime and activate the NLRC4 inflammasome, induce the production of IL-1β, activate platelets and neutrophils and elevate blood pressure in mice. In individuals over 85 years of age, the elevated expression of inflammasome gene modules was associated with all-cause mortality. Thus, targeting inflammasome components may ameliorate chronic inflammation and various other age-associated conditions

    Device-assessed sleep and physical activity in individuals recovering from a hospital admission for COVID-19: a multicentre study

    Get PDF
    Background: The number of individuals recovering from severe COVID-19 is increasing rapidly. However, little is known about physical behaviours that make up the 24-h cycle within these individuals. This study aimed to describe physical behaviours following hospital admission for COVID-19 at eight months post-discharge including associations with acute illness severity and ongoing symptoms. Methods: One thousand seventy-seven patients with COVID-19 discharged from hospital between March and November 2020 were recruited. Using a 14-day wear protocol, wrist-worn accelerometers were sent to participants after a five-month follow-up assessment. Acute illness severity was assessed by the WHO clinical progression scale, and the severity of ongoing symptoms was assessed using four previously reported data-driven clinical recovery clusters. Two existing control populations of office workers and individuals with type 2 diabetes were comparators. Results: Valid accelerometer data from 253 women and 462 men were included. Women engaged in a mean ± SD of 14.9 ± 14.7 min/day of moderate-to-vigorous physical activity (MVPA), with 12.1 ± 1.7 h/day spent inactive and 7.2 ± 1.1 h/day asleep. The values for men were 21.0 ± 22.3 and 12.6 ± 1.7 h /day and 6.9 ± 1.1 h/day, respectively. Over 60% of women and men did not have any days containing a 30-min bout of MVPA. Variability in sleep timing was approximately 2 h in men and women. More severe acute illness was associated with lower total activity and MVPA in recovery. The very severe recovery cluster was associated with fewer days/week containing continuous bouts of MVPA, longer total sleep time, and higher variability in sleep timing. Patients post-hospitalisation with COVID-19 had lower levels of physical activity, greater sleep variability, and lower sleep efficiency than a similarly aged cohort of office workers or those with type 2 diabetes. Conclusions: Those recovering from a hospital admission for COVID-19 have low levels of physical activity and disrupted patterns of sleep several months after discharge. Our comparative cohorts indicate that the long-term impact of COVID-19 on physical behaviours is significant

    2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary

    Get PDF
    The International Liaison Committee on Resuscitation has initiated a near-continuous review of cardiopulmonary resuscitation science that replaces the previous 5-year cyclic batch-and-queue approach process. This is the first of an annual series of International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations summary articles that will include the cardiopulmonary resuscitation science reviewed by the International Liaison Committee on Resuscitation in the previous year. The review this year includes 5 basic life support and 1 paediatric Consensuses on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Each of these includes a summary of the science and its quality based on Grading of Recommendations, Assessment, Development, and Evaluation criteria and treatment recommendations. Insights into the deliberations of the International Liaison Committee on Resuscitation task force members are provided in Values and Preferences sections. Finally, the task force members have pri-oritised and listed the top 3 knowledge gaps for each population, intervention, comparator, and outcome question. (C) 2017 European Resuscitation Council and American Heart Association, Inc. Published by Elsevier B.V. All rights reserved.Peer reviewe

    Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies

    Get PDF
    Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.g., lipids, nucleic acids, proteins), and that can have biological functions within and beyond the CNS. Thus, CSF EVs likely serve as both mediators of and contributors to communication in the CNS. Accordingly, their potential as biomarkers for CNS diseases has stimulated much excitement for and attention to CSF EV research. However, studies on CSF EVs present unique challenges relative to EV studies in other biofluids, including the invasive nature of CSF collection, limited CSF volumes and the low numbers of EVs in CSF as compared to plasma. Here, the objectives of the International Society for Extracellular Vesicles CSF Task Force are to promote the reproducibility of CSF EV studies by providing current reporting and best practices, and recommendations and reporting guidelines, for CSF EV studies. To accomplish this, we created and distributed a world‐wide survey to ISEV members to assess methods considered ‘best practices’ for CSF EVs, then performed a detailed literature review for CSF EV publications that was used to curate methods and resources. Based on responses to the survey and curated information from publications, the CSF Task Force herein provides recommendations and reporting guidelines to promote the reproducibility of CSF EV studies in seven domains: (i) CSF Collection, Processing, and Storage; (ii) CSF EV Separation/Concentration; (iii) CSF EV Size and Number Measurements; (iv) CSF EV Protein Studies; (v) CSF EV RNA Studies; (vi) CSF EV Omics Studies and (vii) CSF EV Functional Studies

    Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen

    Get PDF
    Staphyloferrin B (SB) is a citrate-based polycarboxylate siderophore produced and utilized by the human pathogen Staphylococcus aureus for acquiring iron when colonizing the vertebrate host. The first chemical synthesis of SB is reported, which enables further molecular and biological characterization and provides access to structural analogues of the siderophore. Under conditions of iron limitation, addition of synthetic SB to bacterial growth medium recovered the growth of the antibiotic resistant community isolate S. aureus USA300 JE2. Two structural analogues of SB, epiSB and SBimide, were also synthesized and employed to investigate how epimerization of the citric acid moiety or imide formation influence its function as a siderophore. Epimerization of the citric acid stereocenter perturbed the iron-binding properties and siderophore function of SB as evidenced by experimental and computational modeling studies. Although epiSB provided growth recovery to S. aureus USA300 JE2 cultured in iron-deficient medium, the effect was attenuated relative to that of SB. Moreover, SB more effectively sequestered the Fe(III) bound to human holo-transferrin, an iron source of S. aureus, than epiSB. SBimide is an imide analogous to the imide forms of other citric acid siderophores that are often observed when these molecules are isolated from natural sources. Here, SBimide is shown to be unstable, converting to native SB at physiological pH. SB is considered to be a virulence factor of S. aureus, a pathogen that poses a particular threat to public health because of the number of drug-resistant strains emerging in hospital and community settings. Iron acquisition by S. aureus is important for its ability to colonize the human host and cause disease, and new chemical insights into the structure and function of SB will inform the search for new therapeutic strategies for combating S. aureus infections.Alfred Benzon Foundation (Postdoctoral fellowship)Pacific Southwest Regional Center of ExcellenceAlfred P. Sloan Foundatio
    corecore